论文标题

电化学石墨烯宽带微波波指导用于超敏生物传感的

Electrochemically-gated Graphene Broadband Microwave Waveguides for Ultrasensitive Biosensing

论文作者

Gubeljak, Patrik, Xu, Tianhui, Pedrazzetti, Lorenzo, Burton, Oliver J., Magagnin, Luca, Hofmann, Stephan, Malliaras, George G., Lombardo, Antonio

论文摘要

鉴定非放大DNA序列和单基碱突变对于分子生物学和遗传诊断至关重要。本文报告了一种新型传感器,该传感器由电化石化石墨烯共面波和微流体通道组成。暴露于分析物后,由于与条纹场的相互作用以及由静电门控引起的石墨烯动态电导率的调节,波导中电磁波的传播被修饰。将探针DNA序列固定在石墨烯表面上,并将传感器暴露于DNA序列上,该序列要么完全匹配探针,包含单键不匹配或不相关。通过监测50 MHz和50 GHz之间的频率的散射参数,在浓度低至每升1 attomole 1(上午1点)时,可以实现对不同链的明确和可重复的区分。通过控制和同步频率扫描,电化学门控和微流体通道中的液体流量,传感器会生成多维数据集。高级数据分析技术被用来充分利用数据集的丰富性。即使在存在模拟噪声和低信噪比的情况下,所有三个序列之间的分类精度> 97%。该传感器超过了识别单碱基不匹配的磁场晶体管和微波传感器的最新灵敏度。

Identification of non-amplified DNA sequences and single-base mutations is essential for molecular biology and genetic diagnostics. This paper reports a novel sensor consisting of electrochemically-gated graphene coplanar waveguides coupled with a microfluidic channel. Upon exposure to analytes, propagation of electromagnetic waves in the waveguides is modified as a result of interactions with the fringing field and modulation of graphene dynamic conductivity resulting from electrostatic gating. Probe DNA sequences are immobilised on the graphene surface, and the sensor is exposed to DNA sequences which either perfectly match the probe, contain a singlebase mismatch or are unrelated. By monitoring the scattering parameters at frequencies between 50 MHz and 50 GHz, unambiguous and reproducible discrimination of the different strands is achieved at concentrations as low as 1 attomole per litre (1 aM). By controlling and synchronising frequency sweeps, electrochemical gating, and liquid flow in the microfluidic channel, the sensor generates multidimensional datasets. Advanced data analysis techniques are utilised to take full advantage of the richness of the dataset. A classification accuracy > 97% between all three sequences is achieved using different Machine Learning models, even in the presence of simulated noise and low signal-to-noise ratios. The sensor exceeds state-of-the-art sensitivity of field-effect transistors and microwave sensors for the identification of single-base mismatches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源