论文标题
用量子LDPC代码和迭代解码的纠缠净化
Entanglement Purification with Quantum LDPC Codes and Iterative Decoding
论文作者
论文摘要
量子低密度平价检查(QLDPC)代码的最新结构提供了逻辑量子数量的最佳缩放和代码长度方面的最小距离,从而打开了耐故障的量子系统,其资源最小的量子范围内的头顶最少。但是,从基于邻居连接的拓扑代码到远程相互作用的QLDPC代码的硬件路径是一个挑战。考虑到基于最佳QLDPC代码的量子计算机构建单片架构的实际困难,值得考虑在互连量子处理器网络上对此类代码进行分布式实现。在这种情况下,所有综合征测量和逻辑操作都必须使用处理节点之间的高保真性共享纠缠状态执行。由于用于净化纠缠的概率多到1蒸馏方案效率低下,因此我们研究了这项工作中基于量子误差的纠缠净化。具体而言,我们采用QLDPC代码来提炼GHz状态,因为所得的高保真逻辑GHz状态可以直接与用于执行分布式量子计算(DQC)的代码相互作用,例如用于耐断层的Steane综合征提取。该协议在DQC之外适用,因为纠缠净化是任何量子网络的典型任务。我们使用基于MIN-SUM算法(MSA)的迭代解码器,使用$ 0.118 $升起的产品QLDPC代码的$ 0.118 $的费率蒸馏出$ 3 $ Qubit的GHz状态,并在I.I.D.下获得$ 0.7974 $的输入阈值。单粒去极化噪声。对于任何GHz纯化协议,这是$ 0.118 $的收益率的最佳门槛。我们的结果也适用于更大尺寸的GHz状态,在其中我们扩展了有关$ 3 $ Qubit GHz状态的测量属性的技术结果,以构建可扩展的GHz纯化协议。
Recent constructions of quantum low-density parity-check (QLDPC) codes provide optimal scaling of the number of logical qubits and the minimum distance in terms of the code length, thereby opening the door to fault-tolerant quantum systems with minimal resource overhead. However, the hardware path from nearest-neighbor-connection-based topological codes to long-range-interaction-demanding QLDPC codes is a challenging one. Given the practical difficulty in building a monolithic architecture for quantum computers based on optimal QLDPC codes, it is worth considering a distributed implementation of such codes over a network of interconnected quantum processors. In such a setting, all syndrome measurements and logical operations must be performed using high-fidelity shared entangled states between the processing nodes. Since probabilistic many-to-1 distillation schemes for purifying entanglement are inefficient, we investigate quantum error correction based entanglement purification in this work. Specifically, we employ QLDPC codes to distill GHZ states, as the resulting high-fidelity logical GHZ states can interact directly with the code used to perform distributed quantum computing (DQC), e.g. for fault-tolerant Steane syndrome extraction. This protocol is applicable beyond DQC since entanglement purification is a quintessential task of any quantum network. We use the min-sum algorithm (MSA) based iterative decoder for distilling $3$-qubit GHZ states using a rate $0.118$ family of lifted product QLDPC codes and obtain an input threshold of $\approx 0.7974$ under i.i.d. single-qubit depolarizing noise. This represents the best threshold for a yield of $0.118$ for any GHZ purification protocol. Our results apply to larger size GHZ states as well, where we extend our technical result about a measurement property of $3$-qubit GHZ states to construct a scalable GHZ purification protocol.