论文标题

存在针对双相问题的基态解决方案

Existence of ground state solutions for a Choquard double phase problem

论文作者

Arora, Rakesh, Fiscella, Alessio, Mukherjee, Tuhina, Winkert, Patrick

论文摘要

在本文中,我们研究了由双相操作员驱动的QuasilIrinear椭圆方程,该方程涉及该形式 \ begin {align*} - \ Mathcal {l} _ { u)} {| x-y |^μ} \,\ mathrm {d} y \ right)f(x,u) \ quad \ text {in} \ mathbb {r}^n, \ end {align*} 其中$ \ Mathcal {l} _ {p,q}^{a} $是双相操作员 \ begin {align*} \ Mathcal {l} _ { w^{1,\ Mathcal {h}}(\ Mathbb {r}^n), \ end {align*} $0。 $f\colon\mathbb{R}^N\times\mathbb{R}\to\mathbb{R}$ is a continuous function that satisfies a subcritical growth. Based on the Hardy-Littlewood-Sobolev inequality, the Nehari manifold and variational tools, we prove the existence of ground state solutions of such problems under different assumptions on the data.

In this paper we study quasilinear elliptic equations driven by the double phase operator involving a Choquard term of the form \begin{align*} -\mathcal{L}_{p,q}^{a}(u) + |u|^{p-2}u+ a(x) |u|^{q-2}u = \left( \int_{\mathbb{R}^N} \frac{F(y, u)}{|x-y|^μ}\,\mathrm{d} y\right)f(x,u) \quad\text{in } \mathbb{R}^N, \end{align*} where $\mathcal{L}_{p,q}^{a}$ is the double phase operator given by \begin{align*} \mathcal{L}_{p,q}^{a}(u):= \operatorname{div}\big(|\nabla u|^{p-2}\nabla u + a(x) |\nabla u|^{q-2}\nabla u \big), \quad u\in W^{1,\mathcal{H}}(\mathbb{R}^N), \end{align*} $0<μ<N$, $1<p<N$, $p<q<p+ \frac{αp}{N}$, $0 \leq a(\cdot)\in C^{0,α}(\mathbb{R}^N)$ with $α\in (0,1]$ and $f\colon\mathbb{R}^N\times\mathbb{R}\to\mathbb{R}$ is a continuous function that satisfies a subcritical growth. Based on the Hardy-Littlewood-Sobolev inequality, the Nehari manifold and variational tools, we prove the existence of ground state solutions of such problems under different assumptions on the data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源