论文标题

关于散射标量和流动值函数的多尺度准插值

On multiscale quasi-interpolation of scattered scalar- and manifold-valued functions

论文作者

Sharon, Nir, Cohen, Rafael Sherbu, Wendland, Holger

论文摘要

我们解决了从任意分散位点给出的离散样本近似未知函数的问题。这个问题在数值科学中至关重要,在数值科学中,现代应用也强调了解决具有多种值的函数情况的需求。在本文中,我们介绍和分析了基于核心和歧管值函数的基于内核的准交叉和多尺度近似的组合。虽然准插值为近似问题提供了一个强大的工具,如果数据是在无限网格上定义的,但在散射数据方面,情况更为复杂。在这里,高阶准插入方案要么需要衍生信息或在数值上变得不稳定。因此,本文主要研究了通过将准互化与多尺度技术相结合的改进。本文的主要贡献如下。首先,我们介绍了标量值函数的多尺度准插值技术。其次,我们展示了如何使用移动最小二乘操作员到歧管值的设置进行这种技术。第三,我们给出了一个数学证明,即融合的准交互也将导致融合多尺度准交叉插值。第四,我们提供了充分的数值证据,表明多尺度的准交叉化具有较高的融合与准交叉化。此外,我们还将提供示例,表明多尺度准交叉方法为许多数据分析任务(例如降解和异常检测)提供了强大的工具。对于大量数据点和高维度的情况,它特别有吸引力。

We address the problem of approximating an unknown function from its discrete samples given at arbitrarily scattered sites. This problem is essential in numerical sciences, where modern applications also highlight the need for a solution to the case of functions with manifold values. In this paper, we introduce and analyze a combination of kernel-based quasi-interpolation and multiscale approximations for both scalar- and manifold-valued functions. While quasi-interpolation provides a powerful tool for approximation problems if the data is defined on infinite grids, the situation is more complicated when it comes to scattered data. Here, higher-order quasi-interpolation schemes either require derivative information or become numerically unstable. Hence, this paper principally studies the improvement achieved by combining quasi-interpolation with a multiscale technique. The main contributions of this paper are as follows. First, we introduce the multiscale quasi-interpolation technique for scalar-valued functions. Second, we show how this technique can be carried over using moving least-squares operators to the manifold-valued setting. Third, we give a mathematical proof that converging quasi-interpolation will also lead to converging multiscale quasi-interpolation. Fourth, we provide ample numerical evidence that multiscale quasi-interpolation has superior convergence to quasi-interpolation. In addition, we will provide examples showing that the multiscale quasi-interpolation approach offers a powerful tool for many data analysis tasks, such as denoising and anomaly detection. It is especially attractive for cases of massive data points and high dimensionality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源