论文标题

脱位网络节点的迁移率增强及其对位错乘法和应变硬化的影响

Enhanced mobility of dislocation network nodes and its effect on dislocation multiplication and strain hardening

论文作者

Bertin, Nicolas, Cai, Wei, Aubry, Sylvie, Arsenlis, Athanasios, Bulatov, Vasily V.

论文摘要

几十年来,了解晶体的基本物理学一直是材料科学中的巨大挑战,了解晶体的塑性变形。为了克服这一点,已经开发了离散的位错动力学(DDD)方法,但是它缺乏原子分辨率叶子开放了可能会忽略某些关键机制的可能性。通过将大规模分子动力学(MD)与在相同条件下执行的DDD模拟进行比较,我们发现了在高应变速率条件下BCC冰芯的预测强度和微观结构演化的显着差异。这些可追溯到位错网络节点在位错相交处形成的意外行为,这些节点可以以MD揭示的以前未预期的方式移动。一旦结合了这些新发现的淋巴结运动自由,DDD模拟就开始与MD中观察到的塑性进化紧密匹配。这种运动的额外机制,非螺旋位错可以改变其滑动平面会深刻影响脱位乘法,恢复和储存的基本过程,从而定义了金属强度。

Understanding plastic deformation of crystals in terms of the fundamental physics of dislocations has remained a grand challenge in materials science for decades. To overcome this, the Discrete Dislocation Dynamics (DDD) method has been developed, but its lack of atomistic resolution leaves open the possibility that certain key mechanisms may be overlooked. By comparing large-scale Molecular Dynamics (MD) with DDD simulations performed under identical conditions we uncover significant discrepancies in the predicted strength and microstructure evolution in BCC crytals under high-strain rate conditions. These are traced to unexpected behaviors of dislocation network nodes forming at dislocation intersections, that can move in ways not previously anticipated as revealed by MD. Once these newfound freedoms of nodal motion are incorporated, DDD simulations begin to closely match plastic evolution observed in MD. This additional mechanism of motion whereby non-screw dislocations can change their glide plane profoundly affects fundamental processes of dislocation multiplication, recovery and storage that define strength of metals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源