论文标题
新的规律性和独特性导致变化的多维计算
New regularity and uniqueness results in the multidimensional Calculus of Variations
论文作者
论文摘要
在本博士学位论文的第一部分中,我们为可压缩弹性发挥功能性的多凸vex开发了一种规律性理论。 在第二部分中,我们将集中精力在有限弹性的各种情况下进行唯一性问题。在这里,我们的主要目标是建立唯一性标准,在存在时,它保证了相应的全球最小化器的独特性。然后讨论了各种应用和概括,其中之一是对规律性的反例构建。
In the first part of this doctoral thesis we develop a regularity theory for a polyconvex functional in compressible elasticity. In the second part, we will concentrate on uniqueness questions in various situations of finite elasticity. Here it is our main objective to establish uniqueness criteria, which when present, guarantee the uniqueness of the corresponding global minimizer. Then various applications and generalisations are discussed one of which is the construction of a counterexample to regularity.