论文标题
与拉瓜多项式扩展相关的谐波分析运算符的端点估计值
Endpoint estimates for harmonic analysis operators associated with Laguerre polynomial expansions
论文作者
论文摘要
在本文中,我们给出了一个标准,以证明几位运营商的界限结果(((0,\ infty),γ_α)$至$ l^1((0,\ infty),γ_α)$,也来自$ l^\ infty(((0,\ infty),γ_α),γ_α)$ to y Infty(0,\ infty)测量$dγ_α(x)= \ frac {2} {γ(α+1)} x^{2α+1} e^{ - x^2} dx $ on $(0,\ infty)$时,$ {α> - \ frac12} $。我们将使用它来建立Riesz变换,最大运算符,Littlewood-Paley功能,Laplace Transform类型的乘数,Laguerre设置中的分数积分和变异算子的端点估计值。
In this paper we give a criterion to prove boundedness results for several operators from $H^1((0,\infty),γ_α)$ to $L^1((0,\infty),γ_α)$ and also from $L^\infty((0,\infty),γ_α)$ to $\BMO((0,\infty),γ_α)$, with respect to the probability measure $dγ_α(x)=\frac{2}{Γ(α+1)} x^{2α+1} e^{-x^2} dx$ on $(0,\infty)$ when ${α>-\frac12}$. We shall apply it to establish endpoint estimates for Riesz transforms, maximal operators, Littlewood-Paley functions, multipliers of Laplace transform type, fractional integrals and variation operators in the Laguerre setting.