论文标题

因果发现中的不对称可预测性:信息理论方法

Asymmetric predictability in causal discovery: an information theoretic approach

论文作者

Purkayastha, Soumik, Song, Peter X. K.

论文摘要

观察研究中的因果研究在研究中构成了巨大的挑战,在研究中,随机试验或基于干预的研究是不可行的。我们开发了“预测不对称”的信息几何因果发现和推理框架。对于$(x,y)$,预测性不对称能够评估$ x $是否更有可能导致$ y $或反之亦然。如果$ x $和$ y $确定性相关,因果和效应之间的不对称性变得特别简单。我们提出了一个新的指标,称为“指示共同信息”($ dmi $),并建立其关键统计属性。 $ DMI $不仅能够检测双变量数据中的复杂非线性关联模式,而且能够检测和推断因果关系。我们提出的方法依赖于使用傅立叶变换的可扩展非参数密度估计。最终的估计方法比基于经典带宽的密度估计快得多。我们研究了$ dmi $方法的关键渐近性能,并利用数据分解技术来促进使用$ dmi $的因果推理。通过模拟研究和应用程序,我们说明了$ DMI $的性能。

Causal investigations in observational studies pose a great challenge in research where randomized trials or intervention-based studies are not feasible. We develop an information geometric causal discovery and inference framework of "predictive asymmetry". For $(X, Y)$, predictive asymmetry enables assessment of whether $X$ is more likely to cause $Y$ or vice-versa. The asymmetry between cause and effect becomes particularly simple if $X$ and $Y$ are deterministically related. We propose a new metric called the Directed Mutual Information ($DMI$) and establish its key statistical properties. $DMI$ is not only able to detect complex non-linear association patterns in bivariate data, but also is able to detect and infer causal relations. Our proposed methodology relies on scalable non-parametric density estimation using Fourier transform. The resulting estimation method is manyfold faster than the classical bandwidth-based density estimation. We investigate key asymptotic properties of the $DMI$ methodology and a data-splitting technique is utilized to facilitate causal inference using the $DMI$. Through simulation studies and an application, we illustrate the performance of $DMI$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源