论文标题
线性频域Landau-Lifshitz-Gilbert方程式公式
Linearized frequency domain Landau-Lifshitz-Gilbert equation formulation
论文作者
论文摘要
我们为弱时谐波激发场下的磁系统提供了一般有限元线性元件线性化的Landau-lifshitz-gilbert方程(LLGE)求解器。线性化的LLGE是通过假设磁系统平衡状态周围的小偏差而获得的。将这种扩展插入LLGE并仅保留一阶项会提供线性化的LLGE,从而在给定频率的外部时间谐波施加场下为复杂的磁化幅度提供了频域解决方案。我们使用迭代求解器使用广义最小残留方法解决线性系统。我们构建一个预处理矩阵以有效求解线性系统。线性求解器的有效性,有效性,速度和可伸缩性通过数值示例证明。
We present a general finite element linearized Landau-Lifshitz-Gilbert equation (LLGE) solver for magnetic systems under weak time-harmonic excitation field. The linearized LLGE is obtained by assuming a small deviation around the equilibrium state of the magnetic system. Inserting such expansion into LLGE and keeping only first order terms gives the linearized LLGE, which gives a frequency domain solution for the complex magnetization amplitudes under an external time-harmonic applied field of a given frequency. We solve the linear system with an iterative solver using generalized minimal residual method. We construct a preconditioner matrix to effectively solve the linear system. The validity, effectiveness, speed, and scalability of the linear solver are demonstrated via numerical examples.