论文标题
使用交叉复发图预测财务时间序列的同步状态
Predicting the State of Synchronization of Financial Time Series using Cross Recurrence Plots
论文作者
论文摘要
互相关分析是理解时间序列的相互动力学的强大工具。这项研究介绍了一种新方法,用于预测两个财务时间序列动态的未来同步状态。为此,我们使用跨反射图作为一种非线性方法来量化两个时间序列的时域中的多维耦合并确定它们的同步状态。我们采用一个深度学习框架,方法是根据从动态亚采样的跨偏见图中提取的特征来解决同步状态的预测。我们提供了有关几个股票的广泛实验,即S \&P100指数的主要成分,以验证我们的方法。我们发现,预测两个时间序列同步状态的任务通常很困难,但是对于某些股票而言,可以达到非常令人满意的性能。
Cross-correlation analysis is a powerful tool for understanding the mutual dynamics of time series. This study introduces a new method for predicting the future state of synchronization of the dynamics of two financial time series. To this end, we use the cross-recurrence plot analysis as a nonlinear method for quantifying the multidimensional coupling in the time domain of two time series and for determining their state of synchronization. We adopt a deep learning framework for methodologically addressing the prediction of the synchronization state based on features extracted from dynamically sub-sampled cross-recurrence plots. We provide extensive experiments on several stocks, major constituents of the S\&P100 index, to empirically validate our approach. We find that the task of predicting the state of synchronization of two time series is in general rather difficult, but for certain pairs of stocks attainable with very satisfactory performance.