论文标题

关于多项式后有限后有限组成的评论

A remark on post-critically finite compositions of polynomials

论文作者

Fraser, Benjamin, Ingram, Patrick

论文摘要

第二作者证明,给定程度的一组有限的后多项式是一组有界的高度,直到变量变化。通过观察单次多项式的观察,我们通过证明给定程度的一元多项式G(z)的属性与存在d> 1的特性,使得g(z^d)在后有限有限的情况下,也是一组边界高度。此外,我们在g(z^d)的临界高度上建立了一个下限。

The second author proved that the set of post-critically finite polynomials of given degree is a set of bounded height, up to change of variables. Motivated by an observation about unicritical polynomials, we complement this by proving that the set of monic polynomials g(z) of given degree with the property that there exists a d > 1 such that g(z^d) is post-critically finite, is also a set of bounded height. Moreover, we establish a lower bound on the critical height of g(z^d).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源