论文标题

零维$ o(n)$模型中的小$ n $系列:建设性扩展和跨性别

The small-$N$ series in the zero-dimensional $O(N)$ model: constructive expansions and transseries

论文作者

Benedetti, Dario, Gurau, Razvan, Keppler, Hannes, Lettera, Davide

论文摘要

我们考虑了0维四倍的$ O(N)$ vector模型,并对分区功能$ z(g,n)$及其对数,自由能$ W(g,n)$进行了完整的研究,被视为Riemann Surface上$ g $的函数。使用建设性的田间理论技术,我们证明$ z(g,n)$和$ w(g,n)$都是borel总结函数,沿切割复杂平面中的所有光线$ \ mathbb {c}_π= \ mathbb {c} \ setMinus \ setMinus \ mathbb {r} _-_-- $。我们使用中间字段表示恢复了$ z(g,n)$的跨系列扩展。我们还研究了$ z(g,n)$和$ w(g,n)$的小$ n $扩展。对于任何$ g = | g | $ |φ| <3π/2 $,在riemann表面的e^{\ imath或这些扩展的泰勒系数,$ z_n(g)$和$ w_n(g)$,展示了类似于$ z(g,n)$和$ w(g,n)$的分析属性,并且具有跨性别的扩展。 $ z_n(g)$的跨系列扩展很容易访问:与$ z(g,n)$,对于任何$ n $,$ z_n(g)$的$ z(g,n)$具有零和一单位的贡献。 $ w_n(g)$的跨系列是使用möebius倒置获得的,并总结这些跨系列产生了$ w(g,n)$的跨系列扩展。 $ w_n(g)$和$ w(g,n)$的跨系列明显不同:而$ w(g,n)$显示了任意多个多in-Instantons的捐款,$ w_n(g)$显示出最多只有$ n $ n $ instanton sectors的供款。

We consider the 0-dimensional quartic $O(N)$ vector model and present a complete study of the partition function $Z(g,N)$ and its logarithm, the free energy $W(g,N)$, seen as functions of the coupling $g$ on a Riemann surface. Using constructive field theory techniques we prove that both $Z(g,N)$ and $W(g,N)$ are Borel summable functions along all the rays in the cut complex plane $\mathbb{C}_π =\mathbb{C}\setminus \mathbb{R}_-$. We recover the transseries expansion of $Z(g,N)$ using the intermediate field representation. We furthermore study the small-$N$ expansions of $Z(g,N)$ and $ W(g,N)$. For any $g=|g| e^{\imath φ}$ on the sector of the Riemann surface with $|φ|<3π/2$, the small-$N$ expansion of $Z(g,N)$ has infinite radius of convergence in $N$ while the expansion of $W(g,N)$ has a finite radius of convergence in $N$ for $g$ in a subdomain of the same sector. The Taylor coefficients of these expansions, $Z_n(g)$ and $W_n(g)$, exhibit analytic properties similar to $Z(g,N)$ and $W(g,N)$ and have transseries expansions. The transseries expansion of $Z_n(g)$ is readily accessible: much like $Z(g,N)$, for any $n$, $Z_n(g)$ has a zero- and a one-instanton contribution. The transseries of $W_n(g)$ is obtained using Möebius inversion and summing these transseries yields the transseries expansion of $W(g,N)$. The transseries of $W_n(g)$ and $W(g,N)$ are markedly different: while $W(g,N)$ displays contributions from arbitrarily many multi-instantons, $W_n(g)$ exhibits contributions of only up to $n$-instanton sectors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源