论文标题
Bionli:使用词典 - 语义限制来生成生物医学NLI数据集
BioNLI: Generating a Biomedical NLI Dataset Using Lexico-semantic Constraints for Adversarial Examples
论文作者
论文摘要
自然语言推论(NLI)对于生物医学领域的复杂决策至关重要。例如,一个关键的问题是,实验证据是否支持给定的生物医学机制。这可以看作是NLI问题,但是没有直接可用的数据集来解决此问题。主要的挑战是,为此任务手动创建内容丰富的负面示例是困难而昂贵的。我们介绍了一种新型的半监督程序,该程序从现有的生物医学数据集中引导NLI数据集,该数据集将机制与摘要中的实验证据配对。我们使用九种策略生成了一系列负面示例,这些策略通过规则操纵了基本机制的结构,例如,将实体在交互作用中的作用翻转,更重要的是,由于神经逻辑解码系统中的逻辑限制因素扰动。我们使用此过程在生物医学领域中为NLI创建一个新颖的数据集,称为Bionli和基准两个最先进的生物医学分类器。我们获得的最佳结果是在F1中的70年代左右,这表明了任务的困难。至关重要的是,不同类别的否定示例的性能差异很大,从简单角色的97%f1变化负面示例,到使用神经逻辑解码产生的负面示例的机会勉强远胜于机会。
Natural language inference (NLI) is critical for complex decision-making in biomedical domain. One key question, for example, is whether a given biomedical mechanism is supported by experimental evidence. This can be seen as an NLI problem but there are no directly usable datasets to address this. The main challenge is that manually creating informative negative examples for this task is difficult and expensive. We introduce a novel semi-supervised procedure that bootstraps an NLI dataset from existing biomedical dataset that pairs mechanisms with experimental evidence in abstracts. We generate a range of negative examples using nine strategies that manipulate the structure of the underlying mechanisms both with rules, e.g., flip the roles of the entities in the interaction, and, more importantly, as perturbations via logical constraints in a neuro-logical decoding system. We use this procedure to create a novel dataset for NLI in the biomedical domain, called BioNLI and benchmark two state-of-the-art biomedical classifiers. The best result we obtain is around mid 70s in F1, suggesting the difficulty of the task. Critically, the performance on the different classes of negative examples varies widely, from 97% F1 on the simple role change negative examples, to barely better than chance on the negative examples generated using neuro-logic decoding.