论文标题

各向异性多分辨率分析以进行深膜检测

Anisotropic multiresolution analyses for deepfake detection

论文作者

Huang, Wei, Valsecchi, Michelangelo, Multerer, Michael

论文摘要

生成的对抗网络(GAN)在图像,视频和音频综合的最前沿铺平了通往全新媒体生成功能的道路。但是,他们也可以被滥用和虐待来捏造精心的谎言,能够激发公众的辩论。甘斯(Gans)构成的威胁引发了识别真正内容和捏造的威胁。先前的研究通过使用经典的机器学习技术来解决这项任务,例如k-neartheart邻居和本征界,不幸的是,这并没有非常有效。随后的方法集中在利用频率分解,即离散的余弦变换,小波和小波数据包,以预处理分类器的输入特征。但是,现有方法仅依赖于各向同性转换。我们认为,由于GAN主要利用各向同性卷积来产生其输出,因此在通过各向异性转换提取的子频段的系数分布中留下清晰的痕迹,指纹。我们采用完全可分离的小波变换和多波管来获取各向异性特征,以进食标准的CNN分类器。最后,我们发现完全可分开的转换能够改善最先进的方式。

Generative Adversarial Networks (GANs) have paved the path towards entirely new media generation capabilities at the forefront of image, video, and audio synthesis. However, they can also be misused and abused to fabricate elaborate lies, capable of stirring up the public debate. The threat posed by GANs has sparked the need to discern between genuine content and fabricated one. Previous studies have tackled this task by using classical machine learning techniques, such as k-nearest neighbours and eigenfaces, which unfortunately did not prove very effective. Subsequent methods have focused on leveraging on frequency decompositions, i.e., discrete cosine transform, wavelets, and wavelet packets, to preprocess the input features for classifiers. However, existing approaches only rely on isotropic transformations. We argue that, since GANs primarily utilize isotropic convolutions to generate their output, they leave clear traces, their fingerprint, in the coefficient distribution on sub-bands extracted by anisotropic transformations. We employ the fully separable wavelet transform and multiwavelets to obtain the anisotropic features to feed to standard CNN classifiers. Lastly, we find the fully separable transform capable of improving the state-of-the-art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源