论文标题
(缓慢的)通货膨胀吸引者
(Slow-)Twisting inflationary attractors
论文作者
论文摘要
我们详细探讨了多场通货膨胀模型的动态。我们首先重新审视两场病例,并以小或较大的转弯速率重新绘制吸引者溶液的坐标独立表达,从而强调了异构体在存在快速转移溶液中的作用。然后,对于慢速扭转方案中的三个字段,我们为通用场空间几何和电势的吸引溶液提供了优雅的表达式,并研究了一阶扰动的行为。对于通用$ \ Mathcal {n} $ - 字段模型,我们的方法迅速增长为代数复杂性。我们观察到文献中的场空间异构体很常见,并且能够获取吸引子解决方案并推断出$ \ Mathcal {n} $ - 字段模型的某些等轴测类别的稳定性。最后,我们将讨论应用于具体的超级重力模型。这些分析最终证明了$ \ Mathcal {n}> 2 $与两场情况不同的动力吸引子的存在,并为在宇宙微波背景和随机引力波谱中对其现象学的未来研究提供了有用的工具。
We explore in detail the dynamics of multi-field inflationary models. We first revisit the two-field case and rederive the coordinate independent expression for the attractor solution with either small or large turn rate, emphasizing the role of isometries for the existence of rapid-turn solutions. Then, for three fields in the slow-twist regime we provide elegant expressions for the attractor solution for generic field-space geometries and potentials and study the behaviour of first order perturbations. For generic $\mathcal{N}$-field models, our method quickly grows in algebraic complexity. We observe that field-space isometries are common in the literature and are able to obtain the attractor solutions and deduce stability for some isometry classes of $\mathcal{N}$-field models. Finally, we apply our discussion to concrete supergravity models. These analyses conclusively demonstrate the existence of $\mathcal{N}>2$ dynamical attractors distinct from the two-field case, and provide tools useful for future studies of their phenomenology in the cosmic microwave background and stochastic gravitational wave spectrum.