论文标题
部分可观测时空混沌系统的无模型预测
Constraining the Tilt of the Milky Way's Dark Matter Halo with the Sagittarius Stream
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Recent studies have suggested that the Milky Way (MW)'s Dark Matter (DM) halo may be significantly tilted with respect to its central stellar disk, a feature that might be linked to its formation history. In this work, we demonstrate a method of constraining the orientation of the minor axis of the DM halo using the angle and frequency variables. This method is complementary to other traditional techniques, such as orbit fitting. We first test the method using a simulated tidal stream evolving in a realistic environment inside an MW-mass host from the FIRE cosmological simulation, showing that the theoretical description of a stream in the action-angle-frequency formalism still holds for a realistic dwarf galaxy stream in a cosmological potential. Utilizing the slopes of the line in angle and frequency space, we show that the correct rotation frame yields a minimal slope difference, allowing us to put a constraint on the minor axis location. Finally, we apply this method to the Sagittarius stream's leading arm. We report that the MW's DM halo is oblate with the flattening parameter in the potential $q\sim0.7-0.9$ and the minor axis pointing toward $(\ell,b) = (42^{o},48^{o})$. Our constraint on the minor axis location is weak and disagrees with the estimates from other works; we argue that the inconsistency can be attributed in part to the observational uncertainties and in part to the influence of the Large Magellanic Cloud.