论文标题

Schrödinger-牛顿方程式具有自发波函数崩溃

Schrödinger--Newton equation with spontaneous wave function collapse

论文作者

Diósi, Lajos

论文摘要

基于标准schrödinger方程在大规模宏观物体上重力修饰的假设,两个独立的建议已经从190年代生存。 Schrödinger-Newton方程(1984年)为游离宏观物体提供了良好的孤子,但缺乏伸展波函数如何在孤子上崩溃的机制。与重力相关的随机Schrödinger方程(1989)提供了自发的崩溃,但所得的孤子经历了微小的扩散,导致动能的不便稳定增加。我们提出了随机schrödinger-牛顿方程,其中包含上述两个与重力相关的修饰。然后,游离宏观体的波函数将逐渐和随机地塌陷到孤子上,而唯一运动没有动量扩散:恢复动量和能量的保护。

Based on the assumption that the standard Schrödinger equation becomes gravitationally modified for massive macroscopic objects, two independent proposals has survived from the nineteen-eighties. The Schrödinger--Newton equation (1984) provides well-localized solitons for free macro-objects but lacks the mechanism how extended wave functions collapse on solitons. The gravity-related stochastic Schrödinger equation (1989) provides the spontaneous collapse but the resulting solitons undergo a tiny diffusion leading to an inconvenient steady increase of the kinetic energy. We propose the stochastic Schrödinger--Newton equation which contains the above two gravity-related modifications together. Then the wave functions of free macroscopic bodies will gradually and stochastically collapse to solitons which perform inertial motion without the momentum diffusion: conservation of momentum and energy is restored.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源