论文标题
非平凡束和代数古典田地理论
Non-trivial bundles and Algebraic Classical Field Theory
论文作者
论文摘要
受经典田地理论的最新代数方法的启发,我们提出了一个基于非平凡纤维束的平滑部分的歧管,提出了一个更通用的环境。中心是在此类部分上观察到的概念,即对它们的适当平滑函数。运动学将通过PEIERLS括号进一步指定,这又是通过线性化场方程的因果传播器来定义的。我们将比较我们使用的形式主义与更传统的形式主义。
Inspired by the recent algebraic approach to classical field theory, we propose a more general setting based on the manifold of smooth sections of a non-trivial fiber bundle. Central is the notion of observables over such sections, i.e. appropriate smooth functions on them. The kinematic will be further specified by means of the Peierls brackets, which in turn are defined via the causal propagators of linearized field equations. We shall compare the formalism we use with the more traditional ones.