论文标题

机器学习模型估算量子点中电荷状态的可视说明

Visual explanations of machine learning model estimating charge states in quantum dots

论文作者

Muto, Yui, Nakaso, Takumi, Shinozaki, Motoya, Aizawa, Takumi, Kitada, Takahito, Nakajima, Takashi, Delbecq, Matthieu R., Yoneda, Jun, Takeda, Kenta, Noiri, Akito, Ludwig, Arne, Wieck, Andreas D., Tarucha, Seigo, Kanemura, Atsunori, Shiga, Motoki, Otsuka, Tomohiro

论文摘要

量子点设备中的电荷状态识别对于准备量子位处理的量子位很重要。为了自动调整大型量子设备,已经证明了机器学习的自动电荷状态识别。为了进一步开发这项技术,对通常是黑匣子的机器学习模型的操作的理解将是有用的。在这项研究中,我们通过梯度加权类激活映射分析了机器学习模型在量子点中估计电荷状态的解释性,该梯度加权映射鉴定了classive歧视区域的预测区域。该模型根据变化过渡线预测状态,表明实现了类似人类的识别。我们还通过利用映射结果的反馈来证明模型的改进。由于我们的模拟和预处理方法的简单性,我们的方法提供了可伸缩性,而无需大量额外的仿真成本,这表明了其适合未来量子点系统扩展的能力。

Charge state recognition in quantum dot devices is important in the preparation of quantum bits for quantum information processing. Toward auto-tuning of larger-scale quantum devices, automatic charge state recognition by machine learning has been demonstrated. For further development of this technology, an understanding of the operation of the machine learning model, which is usually a black box, will be useful. In this study, we analyze the explainability of the machine learning model estimating charge states in quantum dots by gradient-weighted class activation mapping, which identified class-discriminative regions for the predictions. The model predicts the state based on the change transition lines, indicating that human-like recognition is realized. We also demonstrate improvements of the model by utilizing feedback from the mapping results. Due to the simplicity of our simulation and pre-processing methods, our approach offers scalability without significant additional simulation costs, demonstrating its suitability for future quantum dot system expansions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源