论文标题

部分可观测时空混沌系统的无模型预测

Private Isotonic Regression

论文作者

Ghazi, Badih, Kamath, Pritish, Kumar, Ravi, Manurangsi, Pasin

论文摘要

在本文中,我们考虑了等渗回归的差异私有(DP)算法的问题。对于最一般的等渗回归问题,在部分有序的集合(POSET)$ \ MATHCAL {X} $以及对于任何Lipschitz损失函数中,我们都会获得纯dp算法,在给定$ n $输入点的情况下,预期过多的经验风险大约是$ $ \ $ \ nathrm {width}(\ mathcal {\ nathcal calcal {x}) \ log | \ Mathcal {x} | / n $,其中$ \ mathrm {width}(\ mathcal {x})$是poset的宽度。相比之下,我们还获得了大约$(\ mathrm {width}(\ Mathcal {x}) + \ log | \ mathcal {x} |) / n $的近乎匹配的下限,即使对于大致dp算法也是如此。此外,我们表明上述界限本质上是可以在不利用poset的任何进一步结构的情况下获得的最好的。 在完全有序集的特殊情况下,对于$ \ ell_1 $和$ \ ell_2^2 $损失,我们的算法可以在接近线性的运行时间内实现;我们还将该算法扩展到私有等渗回归问题,并在输出函数上具有其他结构性约束。

In this paper, we consider the problem of differentially private (DP) algorithms for isotonic regression. For the most general problem of isotonic regression over a partially ordered set (poset) $\mathcal{X}$ and for any Lipschitz loss function, we obtain a pure-DP algorithm that, given $n$ input points, has an expected excess empirical risk of roughly $\mathrm{width}(\mathcal{X}) \cdot \log|\mathcal{X}| / n$, where $\mathrm{width}(\mathcal{X})$ is the width of the poset. In contrast, we also obtain a near-matching lower bound of roughly $(\mathrm{width}(\mathcal{X}) + \log |\mathcal{X}|) / n$, that holds even for approximate-DP algorithms. Moreover, we show that the above bounds are essentially the best that can be obtained without utilizing any further structure of the poset. In the special case of a totally ordered set and for $\ell_1$ and $\ell_2^2$ losses, our algorithm can be implemented in near-linear running time; we also provide extensions of this algorithm to the problem of private isotonic regression with additional structural constraints on the output function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源