论文标题
部分可观测时空混沌系统的无模型预测
Disentangled and Robust Representation Learning for Bragging Classification in Social Media
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Researching bragging behavior on social media arouses interest of computational (socio) linguists. However, existing bragging classification datasets suffer from a serious data imbalance issue. Because labeling a data-balance dataset is expensive, most methods introduce external knowledge to improve model learning. Nevertheless, such methods inevitably introduce noise and non-relevance information from external knowledge. To overcome the drawback, we propose a novel bragging classification method with disentangle-based representation augmentation and domain-aware adversarial strategy. Specifically, model learns to disentangle and reconstruct representation and generate augmented features via disentangle-based representation augmentation. Moreover, domain-aware adversarial strategy aims to constrain domain of augmented features to improve their robustness. Experimental results demonstrate that our method achieves state-of-the-art performance compared to other methods.