论文标题
部分可观测时空混沌系统的无模型预测
Masked Autoencoders Are Articulatory Learners
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Articulatory recordings track the positions and motion of different articulators along the vocal tract and are widely used to study speech production and to develop speech technologies such as articulatory based speech synthesizers and speech inversion systems. The University of Wisconsin X-Ray microbeam (XRMB) dataset is one of various datasets that provide articulatory recordings synced with audio recordings. The XRMB articulatory recordings employ pellets placed on a number of articulators which can be tracked by the microbeam. However, a significant portion of the articulatory recordings are mistracked, and have been so far unsuable. In this work, we present a deep learning based approach using Masked Autoencoders to accurately reconstruct the mistracked articulatory recordings for 41 out of 47 speakers of the XRMB dataset. Our model is able to reconstruct articulatory trajectories that closely match ground truth, even when three out of eight articulators are mistracked, and retrieve 3.28 out of 3.4 hours of previously unusable recordings.