论文标题
部分可观测时空混沌系统的无模型预测
Efficient Learning of Decision-Making Models: A Penalty Block Coordinate Descent Algorithm for Data-Driven Inverse Optimization
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Decision-making problems are commonly formulated as optimization problems, which are then solved to make optimal decisions. In this work, we consider the inverse problem where we use prior decision data to uncover the underlying decision-making process in the form of a mathematical optimization model. This statistical learning problem is referred to as data-driven inverse optimization. We focus on problems where the underlying decision-making process is modeled as a convex optimization problem whose parameters are unknown. We formulate the inverse optimization problem as a bilevel program and propose an efficient block coordinate descent-based algorithm to solve large problem instances. Numerical experiments on synthetic datasets demonstrate the computational advantage of our method compared to standard commercial solvers. Moreover, the real-world utility of the proposed approach is highlighted through two realistic case studies in which we consider estimating risk preferences and learning local constraint parameters of agents in a multiplayer Nash bargaining game.