论文标题

从健身应用程序中的共享高程概况学习位置:隐私角度

Learning Location from Shared Elevation Profiles in Fitness Apps: A Privacy Perspective

论文作者

Meteriz-Yildiran, Ulku, Yildiran, Necip Fazil, Kim, Joongheon, Mohaisen, David

论文摘要

智能手机和可穿戴设备的广泛使用促进了许多有用的应用。例如,使用全球定位系统(GPS)配备的智能和可穿戴设备,许多应用程序可以收集,处理和共享丰富的元数据,例如地理位置,轨迹,高程和时间。例如,诸如Runkeeper和Strava之类的健身应用程序利用该信息进行活动跟踪,并最近见证了受欢迎的繁荣。这些健身追踪器应用程序具有自己的网络平台,并允许用户在此类平台甚至其他社交网络平台上共享活动。为了保护用户的隐私同时允许共享,其中一些平台可能允许用户披露部分信息,例如活动的高程配置文件,据说这不会泄露用户的位置。在这项工作中,作为一个警示性的故事,我们创建了一个概念证明,我们可以在其中检查可以使用高程概况来预测用户位置的程度。为了解决这个问题,我们设计了三个合理的威胁环境,可以预测目标的城市或行政区。这些威胁设置定义了对手可用的信息来启动预测攻击。确定高程配置文件的简单特征,例如光谱特征,不足,我们设计了自然语言处理(NLP)启发的文本式表示形式和计算机视觉启发的高程图像的表示,并且我们将问题转换为文本和图像分类问题。我们同时使用传统的机器学习和深度学习技术,并实现从59.59 \%到99.80 \%的预测成功率。这些发现令人震惊,强调共享高程信息可能具有明显的位置隐私风险。

The extensive use of smartphones and wearable devices has facilitated many useful applications. For example, with Global Positioning System (GPS)-equipped smart and wearable devices, many applications can gather, process, and share rich metadata, such as geolocation, trajectories, elevation, and time. For example, fitness applications, such as Runkeeper and Strava, utilize the information for activity tracking and have recently witnessed a boom in popularity. Those fitness tracker applications have their own web platforms and allow users to share activities on such platforms or even with other social network platforms. To preserve the privacy of users while allowing sharing, several of those platforms may allow users to disclose partial information, such as the elevation profile for an activity, which supposedly would not leak the location of the users. In this work, and as a cautionary tale, we create a proof of concept where we examine the extent to which elevation profiles can be used to predict the location of users. To tackle this problem, we devise three plausible threat settings under which the city or borough of the targets can be predicted. Those threat settings define the amount of information available to the adversary to launch the prediction attacks. Establishing that simple features of elevation profiles, e.g., spectral features, are insufficient, we devise both natural language processing (NLP)-inspired text-like representation and computer vision-inspired image-like representation of elevation profiles, and we convert the problem at hand into text and image classification problem. We use both traditional machine learning- and deep learning-based techniques and achieve a prediction success rate ranging from 59.59\% to 99.80\%. The findings are alarming, highlighting that sharing elevation information may have significant location privacy risks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源