论文标题
可压缩纳维尔的有限体积方法的错误估计 - stokes--较较高的系统
Error estimates of a finite volume method for the compressible Navier--Stokes--Fourier system
论文作者
论文摘要
在本文中,我们研究了可压缩的Navier-Stokes-tour-tour System的有限体积近似的收敛速率。为此,我们首先显示了高度规则独特的强溶液的局部存在,并在密度和温度保持界限的情况下分析其全局扩展。我们在物理上合理的假设是,数值密度和温度是从上方和下方统一的。相对能量为我们提供了一种优雅的方法,可以在有限体积解决方案和强溶液之间得出先验误差估计。
In this paper we study the convergence rate of a finite volume approximation of the compressible Navier--Stokes--Fourier system. To this end we first show the local existence of a highly regular unique strong solution and analyse its global extension in time as far as the density and temperature remain bounded. We make a physically reasonable assumption that the numerical density and temperature are uniformly bounded from above and below. The relative energy provides us an elegant way to derive a priori error estimates between finite volume solutions and the strong solution.