论文标题

通过一种统一嵌入的联合多人身体检测和方向估计

Joint Multi-Person Body Detection and Orientation Estimation via One Unified Embedding

论文作者

Zhou, Huayi, Jiang, Fei, Si, Jiaxin, Lu, Hongtao

论文摘要

人体定向估计(HBOE)广泛应用于各种应用中,包括机器人技术,监视,行人分析和自主驾驶。尽管许多方法一直在解决HBOE问题,从特定的不受控制的场景到具有挑战性的内部环境,但他们认为人类实例已经被检测到,并将裁剪良好的子图像作为输入。这种设置效率较低,并且在实际应用中的错误(例如人群)中易于错误。在本文中,我们提出了一个单阶段的端到端训练框架,以解决多杆人的HBOE问题。通过在一个嵌入中整合边界框和方向角的预测,我们的方法可以直接在一个图像中共同估计所有物体的位置和方向。我们的关键想法是将HBOE任务集成到人的多尺度锚定渠道预测中,以同时受益于参与的中间功能。因此,我们的方法自然可以适应涉及低分辨率和遮挡的困难实例,如对象检测。我们通过广泛的实验验证了我们在最近提出的基准mebow中验证了我们方法的效率和有效性。此外,我们完成了MEBOW数据集忽略的模棱两可的实例,并提供了相应的弱身体方向标签,以保持IT的完整性和一致性,以支持对多杆人的研究。我们的工作可在https://github.com/hhnuzhy/jointbdoe上获得。

Human body orientation estimation (HBOE) is widely applied into various applications, including robotics, surveillance, pedestrian analysis and autonomous driving. Although many approaches have been addressing the HBOE problem from specific under-controlled scenes to challenging in-the-wild environments, they assume human instances are already detected and take a well cropped sub-image as the input. This setting is less efficient and prone to errors in real application, such as crowds of people. In the paper, we propose a single-stage end-to-end trainable framework for tackling the HBOE problem with multi-persons. By integrating the prediction of bounding boxes and direction angles in one embedding, our method can jointly estimate the location and orientation of all bodies in one image directly. Our key idea is to integrate the HBOE task into the multi-scale anchor channel predictions of persons for concurrently benefiting from engaged intermediate features. Therefore, our approach can naturally adapt to difficult instances involving low resolution and occlusion as in object detection. We validated the efficiency and effectiveness of our method in the recently presented benchmark MEBOW with extensive experiments. Besides, we completed ambiguous instances ignored by the MEBOW dataset, and provided corresponding weak body-orientation labels to keep the integrity and consistency of it for supporting studies toward multi-persons. Our work is available at https://github.com/hnuzhy/JointBDOE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源