论文标题
部分可观测时空混沌系统的无模型预测
Excess noise and photo-induced effects in highly reflective crystalline mirror coatings
论文作者
论文摘要
高反射镜涂层的热力学引起的长度波动对精度光学干涉仪(例如重力波检测器和超稳激光器)的灵敏度和稳定性产生了根本的限制。主要贡献 - 布朗热噪声 - 与涂料材料的机械损失有关。由于它们的机械损失低,Al \ textSubscript {0.92} ga \ textSubscript {0.08} as/gaas crystalline镜像涂层有望降低此限制。在室温下,与传统的无定形涂层相比,它们显示出较低的棕色热噪声。然而,%尚未对这些涂层中的噪声成分进行详细研究。我们通过在两个独立的低温硅光学Fabry-perot谐振器中使用它们在4 K,16 K和124 K中运行的两个独立的低温硅光学谐振器中使用它们的空间和时间噪声特性进行了详细研究。我们确认了预期的低布朗热噪声,但也证实了两种新的噪声,但发现了超过Brownian噪声的两个新的噪声:超过Brownian的噪声,可以通过过量的噪声(超过旋转的噪声)(超过旋转噪声)(超过全局噪声)。这些新的噪声贡献是改善超稳定激光器和原子钟相关性能的障碍,并有可能限制第三代重力波检测器的灵敏度。因此,必须使用基于半导体材料的类似涂层进行精确干涉测量实验中的仔细考虑。
Thermodynamically induced length fluctuations of high-reflectivity mirror coatings put a fundamental limit on sensitivity and stability of precision optical interferometers like gravitational wave detectors and ultra-stable lasers. The main contribution - Brownian thermal noise - is related to the mechanical loss of the coating material. Owing to their low mechanical losses, Al\textsubscript{0.92}Ga\textsubscript{0.08}As/GaAs crystalline mirror coatings are expected to reduce this limit. At room temperature they have demonstrated lower Brownian thermal noise than with conventional amorphous coatings. %However, no detailed study on the noise constituents from these coatings in optical interferometers has been conducted. We present a detailed study on the spatial and temporal noise properties of such coatings by using them in two independent cryogenic silicon optical Fabry-Perot resonators operated at 4 K, 16 K and 124 K. We confirm the expected low Brownian thermal noise, but also discover two new noise sources that exceed the Brownian noise: birefringent noise that can be canceled via polarization averaging and global excess noise (10 dB above Brownian noise). These new noise contributions are a barrier to improving ultra-stable lasers and the related performance of atomic clocks, and potentially limit the sensitivity of third-generation gravitational wave detectors. Hence, they must be considered carefully in precision interferometry experiments using similar coatings based on semiconductor materials.