论文标题
部分可观测时空混沌系统的无模型预测
Counting conjugacy classes of elements of finite order in exceptional Lie groups
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
This paper continues the study of two numbers that are associated with Lie groups. The first number is $N(G,m)$, the number of conjugacy classes of elements in $G$ whose order divides $m$. The second number is $N(G,m,s)$, the number of conjugacy classes of elements in $G$ whose order divides $m$ and which have $s$ distinct eigenvalues, where we view $G$ as a matrix group in its smallest-degree faithful representation. We describe systematic algorithms for computing both numbers for $G$ a connected and simply-connected exceptional Lie group. We also provide explicit results for all of $N(G,m)$, $N(G_2,m,s)$, and $N(F_4,m,s)$. The numbers $N(G,m,s)$ were previously known only for the classical Lie groups; our results for $N(G,m)$ agree with those already in the literature but are obtained differently.