论文标题

大电池组中数据驱动的热异常检测

Data-Driven Thermal Anomaly Detection in Large Battery Packs

论文作者

Bhaskar, Kiran, Kumar, Ajith, Bunce, James, Pressman, Jacob, Burkell, Neil, Rahn, Christopher D.

论文摘要

电池组中对异常操作的早期检测和追踪对于提高性能和确保安全至关重要。本文提出了一种数据驱动的方法,用于在电池组中使用来自多个锂离子电池电池的实时电压和温度数据的电池组中的在线异常检测。基于平均的残差是针对细胞组生成的,并使用主成分分析进行了评估。然后,使用累积总和控制图对评估的残差进行阈值以检测异常。在电压信号中检测到与细胞平衡相关的轻度外部短路,并且在平衡后需要进行电压再训练。温度残差被证明是至关重要的,可以在14分钟内对模块平衡事件的异常检测,而电压残差无法观察到。对所提出的方法进行的统计测试是对带有基于模型异常的电池电力机车的实验数据进行的。提出的异常检测方法的假阳性速率较低,并且可以准确检测并追踪合成电压和温度异常。与平均残差的直接阈值相比,提议的方法的性能显示出更快的检测时间56%,假否定性少42%,而错过的异常较少60%,同时保持了可比的假阳性率。

The early detection and tracing of anomalous operations in battery packs are critical to improving performance and ensuring safety. This paper presents a data-driven approach for online anomaly detection in battery packs that uses real-time voltage and temperature data from multiple Li-ion battery cells. Mean-based residuals are generated for cell groups and evaluated using Principal Component Analysis. The evaluated residuals are then thresholded using a cumulative sum control chart to detect anomalies. The mild external short circuits associated with cell balancing are detected in the voltage signals and necessitate voltage retraining after balancing. Temperature residuals prove to be critical, enabling anomaly detection of module balancing events within 14 min that are unobservable from the voltage residuals. Statistical testing of the proposed approach is performed on the experimental data from a battery electric locomotive injected with model-based anomalies. The proposed anomaly detection approach has a low false-positive rate and accurately detects and traces the synthetic voltage and temperature anomalies. The performance of the proposed approach compared with direct thresholding of mean-based residuals shows a 56% faster detection time, 42% fewer false negatives, and 60% fewer missed anomalies while maintaining a comparable false-positive rate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源