论文标题

LBF:可学习的双边滤波器用于点云

LBF:Learnable Bilateral Filter For Point Cloud Denoising

论文作者

Si, Huajian, Wei, Zeyong, Zhu, Zhe, Chen, Honghua, Liang, Dong, Wang, Weiming, Wei, Mingqiang

论文摘要

双边滤波器(BF)是一种快速,轻巧且有效的工具,用于图像降级,并延伸到点云降级。但是,它通常涉及连续但手动的参数调整。这种不便折扣了效率和用户体验,以获得满意的降级结果。我们提出了LBF,这是一个可用于点云的端到端可学习的双边过滤网络;据我们所知,这是第一次。与传统的BF及其在整个点云中接收相同参数的变体不同,LBF根据其几何特征(例如,角落,边缘,边缘,平面)学习每个点的自适应参数,避免了残留的噪声,错误被错误的几何几何学细节和畸形的形状。除了BF的可学习范式外,我们还有两个核心来促进LBF。首先,与本地BF不同,LBF通过利用每个点的多尺度贴片具有全球规模的特征感知能力。其次,LBF制定了几何学感知的双向投影损失,导致deNoing的结果忠于其潜在的表面。用户可以不用进行任何费力的参数调整来应用我们的LBF,以实现最佳的降解结果。实验表明,LBF在合成和实扫描数据集上的竞争对手明显改善。

Bilateral filter (BF) is a fast, lightweight and effective tool for image denoising and well extended to point cloud denoising. However, it often involves continual yet manual parameter adjustment; this inconvenience discounts the efficiency and user experience to obtain satisfied denoising results. We propose LBF, an end-to-end learnable bilateral filtering network for point cloud denoising; to our knowledge, this is the first time. Unlike the conventional BF and its variants that receive the same parameters for a whole point cloud, LBF learns adaptive parameters for each point according its geometric characteristic (e.g., corner, edge, plane), avoiding remnant noise, wrongly-removed geometric details, and distorted shapes. Besides the learnable paradigm of BF, we have two cores to facilitate LBF. First, different from the local BF, LBF possesses a global-scale feature perception ability by exploiting multi-scale patches of each point. Second, LBF formulates a geometry-aware bi-directional projection loss, leading the denoising results to being faithful to their underlying surfaces. Users can apply our LBF without any laborious parameter tuning to achieve the optimal denoising results. Experiments show clear improvements of LBF over its competitors on both synthetic and real-scanned datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源