论文标题

平行自我避免的步行,用于低自动化二进制序列问题

Parallel Self-Avoiding Walks for a Low-Autocorrelation Binary Sequences Problem

论文作者

Bošković, Borko, Herzog, Jana, Brest, Janez

论文摘要

具有高功绩因子的低自动相关二进制序列问题代表了强大的计算挑战。需要有效的并行计算算法才能解决此问题的新最著名的解决方案。因此,我们开发了$ \ mathit {sokol} _ {\ mathit {skew}} $ solver,用于偏斜的搜索空间。开发的求解器可以在图形处理单元上并行计算。求解器将搜索过程作为一系列平行和连续的自我避免步行的顺序,并达到了387的加速因子,而其前身$ \ Mathit {lsSorel} $。 $ \ mathit {sokol} _ {\ mathit {skew}} $ solver属于随机求解器,无法保证解决方案的最佳性。为了减轻此问题,我们根据已知最佳偏度对称溶液的小型实例建立了停止条件的预测模型。凭借其帮助和99%的概率,$ \ Mathit {sokol} _ {\ Mathit {skew}} $求解器找到了所有已知和七个新的最著名的偏压序列,用于$ L = 121美元到$ L = 223 $的奇数实例。对于较大的实例,求解器在我们的局限性内无法达到99%的概率,但是它仍然发现了几个最著名的二进制序列。我们还分析了最佳优点因子值的趋势,它表明,随着序列大小的增加,优点因子的价值也会增加,并且这种趋势对于更大的实例而言是平坦的。

A low-autocorrelation binary sequences problem with a high figure of merit factor represents a formidable computational challenge. An efficient parallel computing algorithm is required to reach the new best-known solutions for this problem. Therefore, we developed the $\mathit{sokol}_{\mathit{skew}}$ solver for the skew-symmetric search space. The developed solver takes the advantage of parallel computing on graphics processing units. The solver organized the search process as a sequence of parallel and contiguous self-avoiding walks and achieved a speedup factor of 387 compared with $\mathit{lssOrel}$, its predecessor. The $\mathit{sokol}_{\mathit{skew}}$ solver belongs to stochastic solvers and can not guarantee the optimality of solutions. To mitigate this problem, we established the predictive model of stopping conditions according to the small instances for which the optimal skew-symmetric solutions are known. With its help and 99% probability, the $\mathit{sokol}_{\mathit{skew}}$ solver found all the known and seven new best-known skew-symmetric sequences for odd instances from $L=121$ to $L=223$. For larger instances, the solver can not reach 99% probability within our limitations, but it still found several new best-known binary sequences. We also analyzed the trend of the best merit factor values, and it shows that as sequence size increases, the value of the merit factor also increases, and this trend is flatter for larger instances.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源