论文标题
在$(4-ε)$ - 尺寸和有限温度下的有效作用的单一fermion系统中的空间随机疾病
Spatially Random Disorder in Unitary Fermion System in $(4-ε)$-Dimensions and Effective Action at Finite Temperature
论文作者
论文摘要
非相关的保形场理论对于理解超冷系统的各个方面是重要的。在本文中,我们研究了一个非权威主义系统,该系统与复杂的玻色子相互作用,在存在淬灭疾病的情况下,与Yukawa样相互作用相互作用,类似于Yukawa的相互作用。同质理论流向描述统一费米的相互作用的固定点。在这种疾病的情况下,我们发现该系统在耦合常数的空间中具有有趣的相结构,并在$ε$ - expansion中表现出相互作用的疾病固定点。相关函数在疾病固定点上遵守LIFSHITZ缩放行为,各向异性指数为$ z = 2+γ_e$。我们还以有限温度研究了疾病系统,并计算了对1PI有效作用的主要贡献。
Non-relativistic conformal field theory is significant to understand various aspects of an ultra-cold system. In this paper, we study a non-relativistic system of two-component fermions interacting with a complex boson with Yukawa-like interactions near $d=4$-spatial dimensions in the presence of a quenched disorder. The homogeneous theory flows to an interacting fixed point describing a unitary fermion system. In the presence of the disorder, we find that the system has an interesting phase structure in the space of the coupling constants and exhibits an interacting disorder fixed point in $ε$-expansion. The correlation function obeys Lifshitz scaling behaviour at the disorder fixed point with the anisotropic exponent being $z=2+γ_E$. We also study the disorder system at finite temperature and compute the leading contribution to the 1PI effective action.