论文标题
时间依赖的蒙特卡洛连续辐射转移
Time-dependent Monte Carlo continuum radiative transfer
论文作者
论文摘要
目标。我们提出了用于3D时间依赖的蒙特卡洛辐射转移的算法的实现。它允许一个人模拟温度分布以及散射光和热恢复辐射的图像和光谱能量分布,以嵌入到灰尘分布中的可变照明和加热源,例如截止性磁盘和灰尘壳,最多数周。 方法。我们通过有效的方法扩展了公开可用的3D蒙特卡洛辐射传递代码北极星北极星,以模拟温度分布,散射和通过时间变化辐射源照明的灰尘分布的热重新排放。通过模拟嵌入式中心恒星周围的球形信封中的温度分布,显示了所选的时间步长宽度和每个时间步长的光子套件数量作为给定配置的关键参数的影响。讨论了光学深度对球形包膜的影响以及具有嵌入式恒星的折叠盘模型的影响。最后,我们介绍了一颗被双歧盘包围的星星爆发的模拟。 结果。提出的用于时间依赖的3D连续蒙特卡洛辐射转移的算法是预备研究以及分析可变源周围尘土环境的连续观测的宝贵基础,例如增强年轻的恒星物体。特别是,在光学和近红外波长范围内的光回波以及相应的时间依赖性的热重新发射可观察的变量(例如爆发源)在所有涉及的空间尺度上都是可能的。
Aims. We present an implementation of an algorithm for 3D time-dependent Monte Carlo radiative transfer. It allows one to simulate temperature distributions as well as images and spectral energy distributions of the scattered light and thermal reemission radiation for variable illuminating and heating sources embedded in dust distributions, such as circumstellar disks and dust shells on time scales up to weeks. Methods. We extended the publicly available 3D Monte Carlo radiative transfer code POLARIS with efficient methods for the simulation of temperature distributions, scattering, and thermal reemission of dust distributions illuminated by temporally variable radiation sources. The influence of the chosen temporal step width and the number of photon packages per time step as key parameters for a given configuration is shown by simulating the temperature distribution in a spherical envelope around an embedded central star. The effect of the optical depth on the temperature simulation is discussed for the spherical envelope as well as for a model of a circumstellar disk with an embedded star. Finally, we present simulations of an outburst of a star surrounded by a circumstellar disk. Results. The presented algorithm for time-dependent 3D continuum Monte Carlo radiative transfer is a valuable basis for preparatory studies as well as for the analysis of continuum observations of the dusty environment around variable sources, such as accreting young stellar objects. In particular, the combined study of light echos in the optical and near-infrared wavelength range and the corresponding time-dependent thermal reemission observables of variable, for example outbursting sources, becomes possible on all involved spatial scales.