论文标题
有限基团的中央傅立叶代数的不舒适性常数
Amenability constants of central Fourier algebras of finite groups
论文作者
论文摘要
我们认为有限组$ g $的中央傅立叶代数$ za(g)中央的适用性常数。从超级组代数的意义上讲,这是$ zl^1(g)$的双重对象,因此共享类似的不及性理论。当$ g $具有两个共轭类规模时,我们将提供几类的组,其中$ am(za(g))= am(zl^1(g))$,并讨论$ am(za(g))$。我们还产生了一个新的反例,该示例表明,与$ am(zl^1(g))$,$ am(za(g))$不尊重商组,但是确实具有$ \ frac {7} {4} {4} $的组类别是尖锐的不弥补性常数。
We consider amenability constants of the central Fourier algebra $ZA(G)$ of a finite group $G$. This is a dual object to $ZL^1(G)$ in the sense of hypergroup algebras, and as such shares similar amenability theory. We will provide several classes of groups where $AM(ZA(G)) = AM(ZL^1(G))$, and discuss $AM(ZA(G))$ when $G$ has two conjugacy class sizes. We also produce a new counterexample that shows that unlike $AM(ZL^1(G))$, $AM(ZA(G))$ does not respect quotient groups, however the class of groups that does has $\frac{7}{4}$ as the sharp amenability constant bound.