论文标题
二维费米液体中的寿命异常长
Anomalously long lifetimes in two-dimensional Fermi liquids
论文作者
论文摘要
最近发现的电子液体中流体动力传输的精确表征,尤其是猜想的奇异奇数传输方案,需要在所有温度下除了最先进的分析领先的领导型近似近似值之外的所有温度下的费米 - 液体碰撞积分。我们开发了适用于所有温度的线性碰撞积分的一般基础扩展,并采用这一点来确定二维电子液体中费米表面扰动的衰减速率。特别是,我们提供了有关新的奇数态度的衰减率的详尽数据,其中平等 - 甚至费米表面变形迅速衰减,但奇数模式却是异常长的。我们发现,这种运输方式在相当大的温度下存在$ t \ lyssim 0.1 t_f $,使该机制范围内。
A precise characterization of the recently discovered crossover to hydrodynamic transport in electron liquids, and in particular of a conjectured exotic odd-parity transport regime, requires a full solution of the Fermi-liquid collision integral at all temperatures beyond state-of-the-art analytic leading-logarithmic approximations. We develop a general basis expansion of the linearized collision integral applicable at all temperatures, and employ this to determine the decay rates of Fermi surface perturbations in two-dimensional electron liquids. In particular, we provide exhaustive data on the decay rates for a new odd-parity regime, in which parity-even Fermi surface deformations decay rapidly but odd-parity modes are anomalously long lived. We find that this transport regime exists at fairly large temperatures $T \lesssim 0.1 T_F$, putting this regime within the reach of current experiments.