论文标题
从星际爆炸到淬火:壳星系中星形阵地的合并驱动的演变
From starburst to quenching: merger-driven evolution of the star formation regimes in a shell galaxy
论文作者
论文摘要
壳星系形成了一类潮汐扭曲的星系,其特征是宽的同心弧(S),延伸到大型的中心距离,外边缘尖锐。在NGC 474突出的外壳中,对年轻大型恒星簇的最新观察表明,这种系统具有恒星形成的极端条件。在本文中,我们提出了银河合并的流体动力模拟及其转化为壳星系。我们分析了恒星形成活动如何随时间,系统内的位置以及恒星形成的物理条件而演变。在相互作用期间,出现过多的密集气体,引发了星爆,即增强的恒星形成速率和减少的耗竭时间。恒星的形成与高分子气体分数的区域相吻合,例如银河系核,螺旋臂,偶尔在合并的早期阶段潮汐碎片。潮汐相互作用将恒星散落在恒星球体中,而气体则冷却并改革圆盘。合并后的形态转化使气体稳定,从而消除了恒星的形成,而无需从活跃的银河核中反馈。该进化显示了与高红移处紧凑型淬火球体相似的相似之处,但没有长的红色掘金相。壳在聚结后出现,在淬火阶段,这意味着它们没有容纳原位恒星形成所需的条件。结果表明,形成壳的合并可能是将蓝色晚期星系变成红色和死亡早期类型的过程的一部分。
Shell galaxies make a class of tidally distorted galaxies, characterised by wide concentric arc(s), extending out to large galactocentric distances with sharp outer edges. Recent observations of young massive star clusters in the prominent outer shell of NGC 474 suggest that such systems host extreme conditions of star formation. In this paper, we present a hydrodynamic simulation of a galaxy merger and its transformation into a shell galaxy. We analyse how the star formation activity evolves with time, location-wise within the system, and what are the physical conditions for star formation. During the interaction, an excess of dense gas appears, triggering a starburst, i.e. an enhanced star formation rate and a reduced depletion time. Star formation coincides with regions of high molecular gas fraction, such as the galactic nucleus, spiral arms, and occasionally the tidal debris during the early stages of the merger. Tidal interactions scatter stars into a stellar spheroid, while the gas cools down and reforms a disc. The morphological transformation after coalescence stabilises the gas and thus quenches star formation, without the need for feedback from an active galactic nucleus. This evolution shows similarities with a compaction scenario for compact quenched spheroids at high-redshift, yet without a long red nugget phase. Shells appear after coalescence, during the quenched phase, implying that they do not host the conditions necessary for in situ star formation. The results suggest that shell-forming mergers might be part of the process of turning blue late-type galaxies into red and dead early-types.