论文标题

垂直磁化的无野外切换状态图,受到常规和非常规的自旋轨道扭矩

Field-free-switching state diagram of perpendicular magnetization subjected to conventional and unconventional spin-orbit torques

论文作者

de Sousa, D. J. P., Haney, P. M., Wang, J. P., Low, Tony

论文摘要

在强的自旋轨道耦合的非磁性材料中缺乏某些结晶对称性,因此存在具有无关紧要的自旋霍尔响应,具有截面的横向自旋电流,具有截面流动和旋转方向。将这种自旋电流注入相邻的铁磁层可以通过非常规的自旋轨道扭矩激发磁化动力学,从而导致具有垂直磁各向异性的铁磁体中的确定性切换。我们研究了垂直的固有阻尼极限中垂直的铁磁体的磁化动力学上的常规自旋轨道和非常规的自旋轨道扭矩之间的相互作用,并确定包括确定性和概率开关,预处理和固定状态的丰富动力学状态。与普遍的信念相反,我们发现存在关键的常规旋转霍尔角度,除此之外,确定性的磁化切换过渡到预科或固定状态。相反,我们表明较大的非常规的旋转霍尔角通常对确定性切换有益。我们得出一个近似表达式,该表达式定性地描述了完整的确定性切换和进攻状态之间的状态图边界,并讨论了搜索对称性旋转的旋转厅材料的标准,以最大程度地提高开关效率。我们的工作为节能旋转设备提供了路线图,这可能会为高级内存计算技术的应用打开门。

The lack of certain crystalline symmetries in strong spin-orbit-coupled non-magnetic materials allows for the existence of uncoventional spin Hall responses, with electrically generated transverse spin currents possessing collinear flow and spin directions. The injection of such spin currents into an adjacent ferromagnetic layer can excite magnetization dynamics via unconventional spin-orbit torques, leading to deterministic switching in ferromagnets with perpendicular magnetic anisotropy. We study the interplay between conventional and unconventional spin-orbit torques on the magnetization dynamics of a perpendicular ferromagnet in the small intrinsic damping limit, and identify a rich set of dynamical regimes that includes deterministic and probabilistic switching, precessional and pinning states. Contrary to common belief, we found that there exists a critical conventional spin Hall angle, beyond which deterministic magnetization switching transitions to a precessional or pinned state. Conversely, we showed that larger unconventional spin Hall angle is generally beneficial for deterministic switching. We derive an approximate expression that qualitatively describes the state diagram boundary between the full deterministic switching and precessional states and discuss a criterion for searching symmetry-broken spin Hall materials in order to maximize switching efficiency. Our work offers a roadmap towards energy efficient spintronic devices, which might opens doors for applications in advanced in-memory computing technologies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源