论文标题
人类和人工智能的模拟双胞胎框架机器人的监督和远程运行
Analog Twin Framework for Human and AI Supervisory Control and Teleoperation of Robots
论文作者
论文摘要
缺乏完全自主能力的资源受限的移动机器人可以依靠在远程站点(例如控制站或云)进行控制的人或AI主管来控制其控制。这种监督的自主权或基于云机器人的控制在两个站点都构成了高网络和计算功能要求,这并不容易实现。本文通过同步两个移动机器人之间的移动性来介绍和分析一个新的模拟双胞胎框架,其中一个机器人充当另一个机器人的模拟双胞胎。我们为目标导航任务设计了一种基于优先优先级的双边远程操作策略,以验证拟议的框架。在此框架上的监督控制策略的实际实施需要通过通信渠道分为主流方案,而客户机器人从远程位置通过代理商(人类或AI)驻留在操作站点上。主机器人使用其自主导航算法控制客户端机器人,该算法对从客户端机器人收到的预测力做出了反应。我们根据网络性能(吞吐量和延迟),任务性能(跟踪错误和目标达到准确性)以及计算效率(内存和CPU利用率)分析了提出的策略。与常规的卸载方案相比,广泛的仿真和现实实验证明了该方法的新颖性,灵活性和多功能性,具有远程计算卸载功能。
Resource-constrained mobile robots that lack the capability to be completely autonomous can rely on a human or AI supervisor acting at a remote site (e.g., control station or cloud) for their control. Such a supervised autonomy or cloud-based control of a robot poses high networking and computing capabilities requirements at both sites, which are not easy to achieve. This paper introduces and analyzes a new analog twin framework by synchronizing mobility between two mobile robots, where one robot acts as an analog twin to the other robot. We devise a novel priority-based supervised bilateral teleoperation strategy for goal navigation tasks to validate the proposed framework. The practical implementation of a supervised control strategy on this framework entails a mobile robot system divided into a Master-Client scheme over a communication channel where the Client robot resides on the site of operation guided by the Master robot through an agent (human or AI) from a remote location. The Master robot controls the Client robot with its autonomous navigation algorithm, which reacts to the predictive force received from the Client robot. We analyze the proposed strategy in terms of network performance (throughput and delay), task performance (tracking error and goal reach accuracy), and computing efficiency (memory and CPU utilization). Extensive simulations and real-world experiments demonstrate the method's novelty, flexibility, and versatility in realizing reactive planning applications with remote computational offloading capabilities compared to conventional offloading schemes.