论文标题

随机无关leray- $α$带运输噪声的模型:收敛速率和CLT

Stochastic inviscid Leray-$α$ model with transport noise: convergence rates and CLT

论文作者

Luo, Dejun, Tang, Bin

论文摘要

我们认为由运输噪声驱动的圆环上的随机无关leray- $α$模型。在适当的噪声缩放下,我们证明弱解决方案在某些负Sobolev空间中会融合到确定性粘性Leray- $α$模型的独特解决方案中。这意味着运输噪声将无粘性的leray-$α$模型正常,因此它具有近似弱的唯一性。将这种极限结果解释为大量定律,我们研究了基本的中心极限定理,并提供了明确的收敛速率。

We consider the stochastic inviscid Leray-$α$ model on the torus driven by transport noise. Under a suitable scaling of the noise, we prove that the weak solutions converge, in some negative Sobolev spaces, to the unique solution of the deterministic viscous Leray-$α$ model. This implies that transport noise regularizes the inviscid Leray-$α$ model so that it enjoys approximate weak uniqueness. Interpreting such limit result as a law of large numbers, we study the underlying central limit theorem and provide an explicit convergence rate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源