论文标题

数字量子模拟和电路学习,用于产生连贯状态

Digital Quantum Simulation and Circuit Learning for the Generation of Coherent States

论文作者

Liu, Ruilin, Romero, Sebastián V., Oregi, Izaskun, Osaba, Eneko, Villar-Rodriguez, Esther, Ban, Yue

论文摘要

连贯的状态(称为流离失所的真空状态)在量子信息处理,量子机学习和量子光学方面起着重要作用。在本文中,引入了在量子电路中进行数字准备连贯状态的两种方法。首先,我们通过将其分解为Pauli矩阵通过梯子操作员,即创建和歼灭操作员来构建位移操作员。与Fock空间中的泊松分布相比,数字生成的相干状态的高忠诚度得到了验证。其次,通过使用变异量子算法,我们选择不同的ansatzes来生成相干状态。分析量子资源(例如量子门,层和迭代的数量)以进行量子电路学习。仿真结果表明,量子电路学习可以通过选择适当的ansatzes来为学习相干状态提供高保真度。

Coherent states, known as displaced vacuum states, play an important role in quantum information processing, quantum machine learning,and quantum optics. In this article, two ways to digitally prepare coherent states in quantum circuits are introduced. First, we construct the displacement operator by decomposing it into Pauli matrices via ladder operators, i.e., creation and annihilation operators. The high fidelity of the digitally generated coherent states is verified compared with the Poissonian distribution in Fock space. Secondly, by using Variational Quantum Algorithms, we choose different ansatzes to generate coherent states. The quantum resources -- such as numbers of quantum gates, layers and iterations -- are analyzed for quantum circuit learning. The simulation results show that quantum circuit learning can provide high fidelity on learning coherent states by choosing appropriate ansatzes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源