论文标题
基于自我监督的本地化和视觉变压器的机场路面图像检测异物碎片检测
Foreign Object Debris Detection for Airport Pavement Images based on Self-supervised Localization and Vision Transformer
论文作者
论文摘要
当应用于外国物体碎片(FOD)检测时,监督的对象检测方法可提供低标准性能,因为根据联邦航空管理局(FAA)规范,FOD可能是任意对象。当前有监督的对象检测算法需要包含每个被检测对象的带注释的示例的数据集。尽管可以开发一个大型且昂贵的数据集以包括常见的FOD示例,但由于FOD的开放性质,可以在数据集表示中收集所有可能的FOD示例。数据集的局限性可能导致由那些受监督算法驱动的FOD检测系统错过某些FOD,这可能会对机场运营危险。为此,本文通过学习预测跑道图像来提出一个自我监督的FOD定位,从而避免了FOD注释示例的列举。本地化方法利用视觉变压器(VIT)提高定位性能。实验表明该方法在现实世界跑道情况下成功检测到任意FOD。该论文还提供了进行分类的本地化结果的扩展;一个对下游任务有用的功能。为了训练本地化,本文还提出了一个简单且现实的数据集创建框架,仅收集干净的跑道图像。使用无人飞机系统(UAS)在当地机场收集了此方法的培训和测试数据。此外,为公共使用和进一步研究提供了开发的数据集。
Supervised object detection methods provide subpar performance when applied to Foreign Object Debris (FOD) detection because FOD could be arbitrary objects according to the Federal Aviation Administration (FAA) specification. Current supervised object detection algorithms require datasets that contain annotated examples of every to-be-detected object. While a large and expensive dataset could be developed to include common FOD examples, it is infeasible to collect all possible FOD examples in the dataset representation because of the open-ended nature of FOD. Limitations of the dataset could cause FOD detection systems driven by those supervised algorithms to miss certain FOD, which can become dangerous to airport operations. To this end, this paper presents a self-supervised FOD localization by learning to predict the runway images, which avoids the enumeration of FOD annotation examples. The localization method utilizes the Vision Transformer (ViT) to improve localization performance. The experiments show that the method successfully detects arbitrary FOD in real-world runway situations. The paper also provides an extension to the localization result to perform classification; a feature that can be useful to downstream tasks. To train the localization, this paper also presents a simple and realistic dataset creation framework that only collects clean runway images. The training and testing data for this method are collected at a local airport using unmanned aircraft systems (UAS). Additionally, the developed dataset is provided for public use and further studies.