论文标题

使用蜂窝MMWave梁的数据智能阻塞识别数据:可行性研究

Intelligent Blockage Recognition using Cellular mmWave Beamforming Data: Feasibility Study

论文作者

van Berlo, Bram, Miao, Yang, Hersyandika, Rizqi, Meratnia, Nirvana, Ozcelebi, Tanir, Kokkeler, Andre, Pollin, Sofie

论文摘要

设想了6G蜂窝网络的联合通信和传感(JCAS),其中感应操作环境,尤其是在人类存在的情况下与高速无线连接一样重要。传感和随后识别阻塞类型,是避免信号阻塞的第一步。在这种情况下,我们通过一组使用定性和定量分析(分别对深度学习(DL)模型的定性和定量分析调谐)使用一组假设验证实验来研究使用人运动识别作为阻塞类型识别的替代任务的可行性。替代任务对于DL模型测试和/或预培训很有用,因此需要从最终的JCAS环境中收集大量数据。因此,我们从带有混合光束成形的26 GHz蜂窝多用户通信设备中收集和使用一个小数据集。数据转换为多普勒频谱(DFS),并用于假设验证。我们的研究表明,(i)在学习和推理的数据之间存在域的转移需要使用可以成功处理它的DL模型,(ii)DFS输入数据稀释以增加数据集量的数量,应避免避免使用较小的输入数据,不足以通过较低的推理和较低的效果,(iv)较低的效果,(iv)较低的效果,(IV)较低的效果,(iv)驱动效果,(iv)驱动范围,(iv)驱动效果,驱逐效果,驱逐/付费,(iv)驱动型号,触发效果,则驱动范围,(IV)驱动型号,驱动效果,(iv)驱动型号,驱动效果,(iv)驱动型号,驱动效果,驱逐/远程范围。 (v)在预处理过程中,报告的STFT的报告率更高,可能会提高性能,但应始终以每项学习任务进行测试。

Joint Communication and Sensing (JCAS) is envisioned for 6G cellular networks, where sensing the operation environment, especially in presence of humans, is as important as the high-speed wireless connectivity. Sensing, and subsequently recognizing blockage types, is an initial step towards signal blockage avoidance. In this context, we investigate the feasibility of using human motion recognition as a surrogate task for blockage type recognition through a set of hypothesis validation experiments using both qualitative and quantitative analysis (visual inspection and hyperparameter tuning of deep learning (DL) models, respectively). A surrogate task is useful for DL model testing and/or pre-training, thereby requiring a low amount of data to be collected from the eventual JCAS environment. Therefore, we collect and use a small dataset from a 26 GHz cellular multi-user communication device with hybrid beamforming. The data is converted into Doppler Frequency Spectrum (DFS) and used for hypothesis validations. Our research shows that (i) the presence of domain shift between data used for learning and inference requires use of DL models that can successfully handle it, (ii) DFS input data dilution to increase dataset volume should be avoided, (iii) a small volume of input data is not enough for reasonable inference performance, (iv) higher sensing resolution, causing lower sensitivity, should be handled by doing more activities/gestures per frame and lowering sampling rate, and (v) a higher reported sampling rate to STFT during pre-processing may increase performance, but should always be tested on a per learning task basis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源