论文标题
对椭圆方程的积极解决方案的独特性,其单位光盘及其应用的关键指数增长
Uniqueness of positive solutions to elliptic equations with the critical exponential growth on the unit disc and its applications
论文作者
论文摘要
在本文中,我们将解决以下指数增长方程的肯定解决方案的独特问题:\ begin {equination*} \ begin {case}-Δu=λue=λue^{u^2},\ quad \ quad \ quad \ quad&x \ in B_1 \ subset \ subset \ subset \ subbB {r mathbb {r} r} r} u=0,\quad\quad &x\in \partial B_1, \end{cases} \end{equation*} where $ 0<λ<λ_1(B_1)$ and $λ_1(B_1)$ denotes the first eigenvalue of the operator $-Δ$ with the Dirichlet boundary in unit disk.我们的方法依赖于对上述方程式的径向溶液的精致和困难分析,以及在边界附近的解决方案的仔细渐近扩展。这种独特性结果将阐明解决猜想的猜想,即单位光盘上的特鲁丁格 - 梅斯特不平等的最大化器是唯一的。此外,基于这种独特性结果,我们制定了一种新的策略,以建立椭圆方程的量化特性,并具有双曲空间球的关键指数增长,并获得超临界特鲁丁格 - 马体功能的积极关键点的多样性和不存在。我们的量化特性和关键点不存在的方法避免使用文献中使用的复杂爆炸分析。该方法还可以应用于研究高维欧几里得空间$ \ mathbb {r}^n $或双曲线空间的类似问题,为相应的准椭圆方程式提供了具有关键指数生长的相应准椭圆方程的唯一性。
In this paper, we will solve this uniqueness problem of positive solutions to the following equations of exponential growth: \begin{equation*} \begin{cases} -Δu =λue^{u^2},\quad\quad & x\in B_1\subset \mathbb{R}^2,\\ u>0, & x\in B_1,\ \\ u=0,\quad\quad &x\in \partial B_1, \end{cases} \end{equation*} where $ 0<λ<λ_1(B_1)$ and $λ_1(B_1)$ denotes the first eigenvalue of the operator $-Δ$ with the Dirichlet boundary in unit disk. Our method relies on delicate and difficult analysis of radial solutions to the above equation and careful asymptotic expansion of solutions near the boundary. This uniqueness result will shed some light on solving the conjecture that maximizers of the Trudinger-Moser inequality on the unit disc are unique. Furthermore, based on this uniqueness result, we develop a new strategy to establish the quantization property of elliptic equations with the critical exponential growth in the balls of hyperbolic spaces, and obtain the multiplicity and non-existence of positive critical points for super-critical Trudinger-Moser functional. Our method for the quantization property and non-existence of the critical points avoids using the complicated blow-up analysis used in the literature. This method can also be applied to study the similar problems in balls of high dimensional Euclidean space $\mathbb{R}^n$ or hyperbolic spaces provided the uniqueness for the corresponding quasilinear elliptic equations with the critical exponential growth is established.