论文标题

Frozenqubits:通过跳过热点节点来提高QAOA的保真度

FrozenQubits: Boosting Fidelity of QAOA by Skipping Hotspot Nodes

论文作者

Ayanzadeh, Ramin, Alavisamani, Narges, Das, Poulami, Qureshi, Moinuddin

论文摘要

量子近似优化算法(QAOA)是使用近期量子计算机证明量子优势的主要候选者之一。不幸的是,高设备错误率限制了我们可靠地运行QAOA电路的问题以上的问题。在QAOA中,问题图被翻译成量子电路,以使每个边缘对应于电路每一层中的两个2​​ Qubit CNOT操作。由于CNOT非常容易出错,因此QAOA电路的保真度决定了问题图中的边数的数量。 我们观察到,与现实世界应用相对应的大多数图形遵循``power-law''分布,其中一些热点节点具有更高的连接数量。我们利用这种见解,并提出``冻结Qubits'',它冻结了热点节点或量子,并智能地将给定问题的状态空间划分为几个较小的子空间,然后独立解决。由于每个子电路中的CNOT操作数量减少,相应的QAOA子电路明显少于门的易受攻击和分解误差。与先前的电路剪切方法不同,Frozenqubits不需要任何指数复杂的后处理步骤。我们在IBM八台不同的量子计算机上使用5,300台QAOA电路的评估表明,FrozenQuits可以平均将解决方案的质量提高8.73倍(最高57倍),尽管使用2倍的量子资源。

Quantum Approximate Optimization Algorithm (QAOA) is one of the leading candidates for demonstrating the quantum advantage using near-term quantum computers. Unfortunately, high device error rates limit us from reliably running QAOA circuits for problems with more than a few qubits. In QAOA, the problem graph is translated into a quantum circuit such that every edge corresponds to two 2-qubit CNOT operations in each layer of the circuit. As CNOTs are extremely error-prone, the fidelity of QAOA circuits is dictated by the number of edges in the problem graph. We observe that majority of graphs corresponding to real-world applications follow the ``power-law`` distribution, where some hotspot nodes have significantly higher number of connections. We leverage this insight and propose ``FrozenQubits`` that freezes the hotspot nodes or qubits and intelligently partitions the state-space of the given problem into several smaller sub-spaces which are then solved independently. The corresponding QAOA sub-circuits are significantly less vulnerable to gate and decoherence errors due to the reduced number of CNOT operations in each sub-circuit. Unlike prior circuit-cutting approaches, FrozenQubits does not require any exponentially complex post-processing step. Our evaluations with 5,300 QAOA circuits on eight different quantum computers from IBM shows that FrozenQubits can improve the quality of solutions by 8.73x on average (and by up to 57x), albeit utilizing 2x more quantum resources.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源