论文标题
页面:基于原型的图形神经网络的模型级解释
PAGE: Prototype-Based Model-Level Explanations for Graph Neural Networks
论文作者
论文摘要
除了图形神经网络(GNNS)吸引了一个强大的框架彻底改变图形表示学习的框架外,人们对解释GNN模型的需求越来越不断增加。尽管已经开发了各种GNN的解释方法,但大多数研究都集中在实例级别的解释上,这些解释产生了针对给定图形实例量身定制的解释。在我们的研究中,我们提出了基于原型的GNN-解释器(PAGE),这是一种新型的模型级GNN解释方法,该方法通过发现人互化的原型图来解释基础GNN模型用于图形分类的知识。我们的方法对给定班级产生了解释,因此与实例级别的解释相比,能够提供更简洁和全面的解释。首先,页面选择集体式嵌入空间上的类歧视输入图的嵌入在聚类之后。然后,Page通过迭代地通过原型评分函数迭代搜索高匹配节点元组来发现一个常见的子图模式,从而产生了原型图作为我们的解释。使用六个图形分类数据集,我们证明页面在定性上和定量上优于最先进的模型级解释方法。我们还通过证明页面和实例级解释方法之间的关系,页面到输入数据稀缺环境的鲁棒性以及建议的原型评分函数的计算效率来进行系统的实验研究。
Aside from graph neural networks (GNNs) attracting significant attention as a powerful framework revolutionizing graph representation learning, there has been an increasing demand for explaining GNN models. Although various explanation methods for GNNs have been developed, most studies have focused on instance-level explanations, which produce explanations tailored to a given graph instance. In our study, we propose Prototype-bAsed GNN-Explainer (PAGE), a novel model-level GNN explanation method that explains what the underlying GNN model has learned for graph classification by discovering human-interpretable prototype graphs. Our method produces explanations for a given class, thus being capable of offering more concise and comprehensive explanations than those of instance-level explanations. First, PAGE selects embeddings of class-discriminative input graphs on the graph-level embedding space after clustering them. Then, PAGE discovers a common subgraph pattern by iteratively searching for high matching node tuples using node-level embeddings via a prototype scoring function, thereby yielding a prototype graph as our explanation. Using six graph classification datasets, we demonstrate that PAGE qualitatively and quantitatively outperforms the state-of-the-art model-level explanation method. We also carry out systematic experimental studies by demonstrating the relationship between PAGE and instance-level explanation methods, the robustness of PAGE to input data scarce environments, and the computational efficiency of the proposed prototype scoring function in PAGE.