论文标题

通过深度展开的下行链路巨大的MIMO通道估计:角域中的稀疏性利用

Downlink Massive MIMO Channel Estimation via Deep Unrolling : Sparsity Exploitations in Angular Domain

论文作者

Chen, An, Xu, Wenbo, Lu, Liyang, Wang, Yue

论文摘要

在频分化双链体(FDD)大规模的MIMO系统中,可靠的下行链路通道估计对于随后的数据传输至关重要,但由于基本站(BS)数百个天线而导致的大量飞行员开销的成本是以大规模飞行员开销实现的。为了减少飞行员的开销而不损害估计,基于压缩感(CS)的方法已通过利用角域中大量MIMO通道的固有稀疏结构来广泛应用通道估计。但是,在优化过程中,它们仍然具有很高的复杂性以及对稀疏信息的先验知识的要求。为了克服这些挑战,本文通过整合模型驱动的CS和数据驱动的深层展开技术来开发一种新型的混合通道估计框架。所提出的框架由粗糙的估计部分和精细校正部分组成,该框架以两阶段的方式实现,以利用角域中通道的框架间和框架内稀疏性。然后,设计了两个估计方案,具体取决于是否需要先验稀疏信息,第二个方案设计了新的阈值函数以消除这种要求。提供数值结果以验证我们的方案是否可以通过低驾驶机开销和低复杂性实现高精度。

In frequency division duplex (FDD) massive MIMO systems, reliable downlink channel estimation is essential for the subsequent data transmission but is realized at the cost of massive pilot overhead due to hundreds of antennas at base station (BS). In order to reduce the pilot overhead without compromising the estimation, compressive sensing (CS) based methods have been widely applied for channel estimation by exploiting the inherent sparse structure of massive MIMO channel in angular domain. However, they still suffer from high complexity during optimization process and the requirement of prior knowledge on sparsity information. To overcome these challenges, this paper develops a novel hybrid channel estimation framework by integrating the model-driven CS and data-driven deep unrolling techniques. The proposed framework is composed of a coarse estimation part and a fine correction part, which is implemented in a two-stage manner to exploit both inter- and intra-frame sparsities of channels in angular domain. Then, two estimation schemes are designed depending on whether priori sparsity information is required, where the second scheme designs a new thresholding function to eliminate such requirement. Numerical results are provided to verify that our schemes can achieve high accuracy with low pilot overhead and low complexity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源