论文标题

部分可观测时空混沌系统的无模型预测

Hyperbolic 3-manifolds with boundary of polyhedral type

论文作者

Prosanov, Roman

论文摘要

令$ m $成为一个可定向的3个manifold,具有夸张的内部和非空边界,使所有边界组件至少具有至少2个。我们研究了$ \ partial m $的凸孔高压锥体对Alexandrov-weyl型问题。我们考虑具有凸边界的M上的一类双曲线指标,我们称之为弯曲指标,并且自然地将双曲线指标概括为具有凸多个面积边界的$ m $。我们表明,对于$ \ partial m $上的每个凸双曲线锥体$ D $,除了很少的例外,存在$ m $的弯曲度量,使得$ \ partial m $ in $ \ partial m $是$ d $。接下来,我们证明,如果弯曲的实现是我们所说的可控性多面体,那么它是唯一的,而不是同位素。在Lipschitz拓扑的意义上,我们在$ \ partial m上展示了$ \ eartial M的双曲线锥体对象,称为平衡,在所有凸双曲线锥体中都很开放且密集,我们表明他们弯曲的实现是可以控制的。我们还证明,在$ \ partial m $上凸出双曲线锥体的任何凸实现都是弯曲的。 最后,我们推断出存在于$ m $内部的凸连接型指标的一个开放子集,包括所有具有多面体凸内核的指标,因此该子集中的指标是(1)与诱导的内在度量的全球式刚性刚性固定的, (2)关于其弯曲层压的无限刻度。这为W. Thurston的猜想提供了部分进步。

Let $M$ be a compact orientable 3-manifold with hyperbolizable interior and non-empty boundary such that all boundary components have genii at least 2. We study an Alexandrov-Weyl-type problem for convex hyperbolic cone-metrics on $\partial M$. We consider a class of hyperbolic metrics on M with convex boundary, which we call bent metrics, and which naturally generalize hyperbolic metrics on $M$ with convex polyhedral boundary. We show that for each convex hyperbolic cone-metric $d$ on $\partial M$, with few simple exceptions, there exists a bent metric on $M$ such that the induced intrinsic metric on $\partial M$ is $d$. Next, we prove that if a bent realization is what we call controllably polyhedral, then it is unique up to isotopy. We exhibit a large subclass of hyperbolic cone-metrics on $\partial M,$ called balanced, which is open and dense among all convex hyperbolic cone-metrics in the sense of Lipschitz topology, and for which we show that their bent realizations are controllably polyhedral. We additionally prove that any convex realization of a convex hyperbolic cone-metric on $\partial M$ is bent. Finally, we deduce that there exists an open subset of the space of convex cocompact metrics on the interior of $M$, including all metrics with polyhedral convex cores, such that the metrics in this subset are (1) globally rigid with respect to the induced intrinsic metrics on the boundaries of their convex cores; (2) infinitesimally rigid with respect to their bending laminations. This gives partial progress towards conjectures of W. Thurston.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源