论文标题
使用三胞胎网络共享流形学习,用于多个传感器翻译,并融合缺少数据
Shared Manifold Learning Using a Triplet Network for Multiple Sensor Translation and Fusion with Missing Data
论文作者
论文摘要
异质数据融合可以增强给定任务上算法的鲁棒性和准确性。但是,由于各种方式的差异,将传感器对齐并将其信息嵌入歧视和紧凑的表示方面是具有挑战性的。在本文中,我们提出了一个基于对比度学习的多模式对齐网络(commanet),以使来自不同传感器的数据与保留类信息的共享和歧视性流形相结合。所提出的体系结构使用多模式的三重型自动编码器来聚集潜在空间,以至于从每个异质模态中的相同类别的样本彼此映射。由于所有模式都存在于共享歧管中,因此提出了一个统一的分类框架。所得的潜在空间表示形式融合以执行更健壮和准确的分类。在缺失的传感器方案中,一个传感器的潜在空间很容易使用另一个传感器的潜在空间来预测,从而允许传感器翻译。我们对包含来自Aviris-NG和Neon的高光谱数据的手动标记的多模式数据集进行了广泛的实验,以及LIDAR(光检测和范围)来自NEON的数据。最后,该模型在两个基准数据集上进行了验证:柏林数据集(高光谱和合成孔径雷达)和MUUFL GULFPORT数据集(Hyperspectral和LiDAR)。与其他方法进行的比较证明了这种方法的优势。在MUUFL数据集上,我们的总体准确度平均达到了94.3%,而柏林数据集的总体准确性为71.26%,这比其他最先进的方法要好。
Heterogeneous data fusion can enhance the robustness and accuracy of an algorithm on a given task. However, due to the difference in various modalities, aligning the sensors and embedding their information into discriminative and compact representations is challenging. In this paper, we propose a Contrastive learning based MultiModal Alignment Network (CoMMANet) to align data from different sensors into a shared and discriminative manifold where class information is preserved. The proposed architecture uses a multimodal triplet autoencoder to cluster the latent space in such a way that samples of the same classes from each heterogeneous modality are mapped close to each other. Since all the modalities exist in a shared manifold, a unified classification framework is proposed. The resulting latent space representations are fused to perform more robust and accurate classification. In a missing sensor scenario, the latent space of one sensor is easily and efficiently predicted using another sensor's latent space, thereby allowing sensor translation. We conducted extensive experiments on a manually labeled multimodal dataset containing hyperspectral data from AVIRIS-NG and NEON, and LiDAR (light detection and ranging) data from NEON. Lastly, the model is validated on two benchmark datasets: Berlin Dataset (hyperspectral and synthetic aperture radar) and MUUFL Gulfport Dataset (hyperspectral and LiDAR). A comparison made with other methods demonstrates the superiority of this method. We achieved a mean overall accuracy of 94.3% on the MUUFL dataset and the best overall accuracy of 71.26% on the Berlin dataset, which is better than other state-of-the-art approaches.