论文标题
几乎群集图中的统治者着色和CD着色
Dominator Coloring and CD Coloring in Almost Cluster Graphs
论文作者
论文摘要
在本文中,我们研究了图形着色的两个流行变体 - 统治者着色和CD着色。在这两个问题上,我们都将获得一个图形$ g $和一个自然数量$ \ ell $作为输入,目标是将顶点与最多$ \ ell $颜色与特定约束一起颜色。在Dominator着色中,我们需要V(G)$中的每个$ v \,A $ C $,以便$ V $占主导地位的所有Vertices有色$ C $。在CD着色中,我们需要每种颜色$ c $,a $ v \ in v(g)$中的A $ v \,它主导了所有顶点有色$ c $。这些问题由于它们在社会和遗传网络中的应用而定义,在过去的15年中已经进行了广泛的研究。虽然众所周知,当通过$(t,\ ell)$参数化时,这两个问题都是固定参数可处理的(fpt),其中$ t $是$ g $的树宽,但我们认为严格的结构参数化是由问题应用自然出现的。 我们证明,当通过图形的群集顶点删除(CVD)设置的大小进行参数化时,DOMINATOR着色是FPT,并且CD着色是由CVD设置大小加上剩余集团的数量的fpt参数化的。在途中,我们设计了一个更简单,更快的FPT算法,当问题通过图形的双盖(特殊CVD集)的大小参数化时。当参数是图形集团调制器的大小时,我们为问题设计了一个随机的单指数时间算法。这些算法使用基于包容性排斥的多项式筛分技术,并使用这种强大的代数技术添加了不断增长的应用程序。
In this paper, we study two popular variants of Graph Coloring -- Dominator Coloring and CD Coloring. In both problems, we are given a graph $G$ and a natural number $\ell$ as input and the goal is to properly color the vertices with at most $\ell$ colors with specific constraints. In Dominator Coloring, we require for each $v \in V(G)$, a color $c$ such that $v$ dominates all vertices colored $c$. In CD Coloring, we require for each color $c$, a $v \in V(G)$ which dominates all vertices colored $c$. These problems, defined due to their applications in social and genetic networks, have been studied extensively in the last 15 years. While it is known that both problems are fixed-parameter tractable (FPT) when parameterized by $(t,\ell)$ where $t$ is the treewidth of $G$, we consider strictly structural parameterizations which naturally arise out of the problems' applications. We prove that Dominator Coloring is FPT when parameterized by the size of a graph's cluster vertex deletion (CVD) set and that CD Coloring is FPT parameterized by CVD set size plus the number of remaining cliques. En route, we design a simpler and faster FPT algorithms when the problems are parameterized by the size of a graph's twin cover, a special CVD set. When the parameter is the size of a graph's clique modulator, we design a randomized single-exponential time algorithm for the problems. These algorithms use an inclusion-exclusion based polynomial sieving technique and add to the growing number of applications using this powerful algebraic technique.