论文标题

流媒体语音识别的变压者访问者的联合音频/文本培训

Joint Audio/Text Training for Transformer Rescorer of Streaming Speech Recognition

论文作者

Kim, Suyoun, Li, Ke, Kabela, Lucas, Huang, Rongqing, Zhu, Jiedan, Kalinli, Ozlem, Le, Duc

论文摘要

最近,对两次通行流端到端语音识别(ASR)的兴趣越来越多,该识别(ASR)在传统的1届通道流媒体ASR模型上结合了第二频道的撤退模型,以提高识别准确性,同时保持潜伏期较低。变形金刚的最新第二次撤退模型之一是,从第一届通行证模型中采用N-最初的初始输出和音频嵌入,然后通过重新评分N最佳初始输出来选择最佳输出。但是,训练此变压器委员需要昂贵的配对音频训练数据,因为该模型使用音频嵌入作为输入。在这项工作中,我们介绍了针对变形金刚委员会的联合音频/文本培训方法,以利用与配对的音频文本数据相对便宜的未配对文本数据。我们通过在LiblisPeech数据集上的联合音频/文本培训以及我们的大规模内部数据集评估了变形金刚委员,并表明我们的培训方法可以显着提高单词错误率(WER),而无需任何额外的模型参数或延迟。

Recently, there has been an increasing interest in two-pass streaming end-to-end speech recognition (ASR) that incorporates a 2nd-pass rescoring model on top of the conventional 1st-pass streaming ASR model to improve recognition accuracy while keeping latency low. One of the latest 2nd-pass rescoring model, Transformer Rescorer, takes the n-best initial outputs and audio embeddings from the 1st-pass model, and then choose the best output by re-scoring the n-best initial outputs. However, training this Transformer Rescorer requires expensive paired audio-text training data because the model uses audio embeddings as input. In this work, we present our Joint Audio/Text training method for Transformer Rescorer, to leverage unpaired text-only data which is relatively cheaper than paired audio-text data. We evaluate Transformer Rescorer with our Joint Audio/Text training on Librispeech dataset as well as our large-scale in-house dataset and show that our training method can improve word error rate (WER) significantly compared to standard Transformer Rescorer without requiring any extra model parameters or latency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源